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ABSTRACT
With the frequent happening of privacy leakage and the enactment of
privacy laws across different countries, data owners are reluctant to
directly share their raw data and labels with any other party. In reality,
a lot of these raw data are stored in the graph database, especially for
finance. For collaboratively building graph neural networks (GNNs),
federated learning (FL) may not be an ideal choice for the vertically
partitioned setting where privacy and efficiency are the main con-
cerns. Moreover, almost all the existing federated GNNs are mainly
designed for homogeneous graphs, which simplify various types of
relations as the same type, thus largely limits their performance. We
bridge this gap by proposing a split learning-based GNN (SplitGNN),
where this model is divided into two sub-models: the local GNN
model includes all the private data related computation to generate
local node embeddings, whereas the global model calculates global
embeddings by aggregating all the participants’ local embeddings.
Our SplitGNN allows the isolated heterogeneous neighborhood to
be collaboratively utilized. To better capture representations, we
propose a novel Heterogeneous Attention (HAT) algorithm and use
both node-based and path-based attention mechanisms to learn vari-
ous types of nodes and edges with multi-hop relation features. We
demonstrate the effectiveness of our SplitGNN on node classifica-
tion tasks for two standard public datasets and the real-world dataset.
Extensive experimental results validate that our proposed SplitGNN
significantly outperforms the state-of-the-art (SOTA) methods.
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1 INTRODUCTION
Graph neural networks (GNNs) have attracted great interest in a vari-
ety of applications. GNNs can roughly be classified into two classes
based on the graph structure: heterogeneous graph and homogeneous
graph. Generally, the heterogeneous graph contains multiple node-
and relation-types. On the contrary, in the homogeneous graph, nodes
are objects of the same entity type and links are relationships from
the same relation type. For the homogeneous graph, various effec-
tive methods have been investigated. For example, GraphSAGE [1]
can derive the information of neighbors using an aggregation func-
tion. Graph convolutional network (GCN) [2] conducts the aver-
age pooling for each node’s neighbors and then uses both linear
projection and non-linear activation operations. Graph attention
networks (GAT) [3] adopts an effective attention mechanism and
achieves more powerful representation empirically. However, these
methods cannot perform well in heterogeneous graphs, where abun-
dant features are lying on edges (𝑒.𝑔. view frequency, watch duration,
and publication year, 𝑒𝑡 𝑎𝑙 .).

On the other hand, training accurate GNN models requires a
wealth of high-quality graph-structured data, including rich node fea-
tures and complete adjacent information. However, in practice, due
to business competition and regulatory restrictions, such information
could possibly be isolated by different participants, who are unwill-
ing to share their information, plaguing many practical applications,
such as fraud detection over banks and social network recommenda-
tion over platforms. Such data isolation problems present a serious
challenge for the development of GNN models.

Federated learning (FL) and split learning (SL) are two promis-
ing distributed machine learning (ML) approaches that have gained
attention due to their inherent privacy-aware capabilities that allow
participants to collaboratively learn models without disclosing their
raw data. Several recent works have attempted to build federated
GNNs when data are horizontally partitioned [4, 5]. However, few
works have studied the problem of GNN when data are vertically
partitioned, which popularly exists in practice. In a vertically parti-
tioned setting, both features and edges are distributed across different
participants. For example, assume there are three participants (A,
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B, and C) and they have four same nodes. The node features are
vertically split, i.e., A has 𝑓 1, 𝑓 2, and 𝑓 3, B has 𝑓 4 and 𝑓 5, and
C has 𝑓 6 and 𝑓 7. Meanwhile, A, B, and C may have their own
edges. For instance, A has social relation between nodes while B
and C have the payment relation between nodes. We also assume
A is the party that has the node labels. The problem becomes how
to collaboratively build federated GNN models by using the graph
data of 𝐴, 𝐵, and 𝐶. In this paper, we take the vertically partitioned
setting for example and present how to collaboratively build GNN
models by leveraging the privacy and efficiency advantage of split
learning [6].

Unlike previous privacy-preserving machine learning models that
assume only nodes are held by different parties but samples have no
relationship, our task is more challenging because GNN relies on the
samples’ relationships, which are also kept by different participants.
More recently, Zhou 𝑒𝑡 𝑎𝑙 . [7] have attempted federated GNN models
under the vertically setting, however, their work was tested on small-
scale homogeneous graph datasets, limiting their practicability in
large-scale industrial applications. Moreover, the graph topology was
still exploited locally, the model performance may be substantially
reduced when the dataset is largely decentralized. To date, a mature
solution for federated GNN models under the vertically partitioned
setting is still missing. To fill in this gap and facilitate modeling
heterogeneous relational graphs in the vertically partitioned setting,
in this paper, we propose a novel framework, i.e., SplitGNN, for
node classification across multiple heterogeneous graphs by splitting
the whole GNN across different participants.

In summary, the main contributions of this paper include 1:
• We present a novel approach, named SplitGNN, which com-

bines split learning with federated learning and eliminates
their inherent drawbacks. To learn various types of nodes
and edges in the heterogeneous graphs under the vertically
partitioned setting, we design a novel base model named Het-
erogeneous Attention (HAT), which uses both node-based and
path-based attention mechanisms by considering multi-hop
relations.
• We evaluate the different interactive layer strategies for the

server to operate local node embeddings from participants,
then test the SplitGNN performance on different data distri-
butions and analyze the communication effectiveness of our
proposed method compared with federated learning.
• Extensive experiment results on the standard open-source

datasets and the real-world dataset validate the superiority of
our proposed SplitGNN on node classification task.

2 SPLITGNN
In this section, we first introduce our threat model, followed by
an overview of our proposed SplitGNN. We then present how to
generate local node embeddings on each participant, and how to
derive global node embeddings on the server. Finally, we show how
to ensure the privacy of local node embeddings, and propose a new
heterogeneous attention algorithm to better capture the information

11. The data set does not contain any Personal Identifiable Information (PII) 2. The data
set is desensitized and encrypted 3. Adequate data protection was carried out during the
experiment to prevent the risk of data copy leakage, and the data set was destroyed after
the experiment 4. The data set is only used for academic research, it does not represent
any real business situation)

in heterogeneous graphs. The workflow of SplitGNN is shown as
Algorithm 1.

2.1 Threat Model
The security model can be generally categorized into two types,
i.e., honest-but-curious (semi-honest) model and malicious model.
Although the semi-honest setting is less harsh than the malicious
setting, it is more practical and has better efficiency than the latter.
Hence, we consider semi-honest adversaries. That is, participants
and the server strictly follow the protocol, but they also use all
intermediate computation results to infer as much information as
possible. We also assume that the server does not collude with any
party. This security setting is commonly considered in many existing
works [8]. We remark that this is a reasonable assumption since the
server can be played by authorities such as governments or replaced
by a trusted execution environment (TEE) [9].

GNN GNN

Interactive Server

encryption Label Server

ID Alignment

MPC

GNN

ID Alignment

MPC

Client 1 Client 2 Client N

embedding

label

Figure 1: Workflow for SplitGNN.

2.2 Overview of SplitGNN
In our framework, participants are willing to cooperatively train a
global model with the aid of a server storing a fraction of the model,
but are reluctant to directly share raw data and labels, because not
only the raw samples (e.g., chest X-ray images) but also their ground-
truth labels (e.g., lung cancer diagnosis) are privacy-sensitive. In
actual operation, the label server is the same as one of the participants
who want to enhance the classification model’s capabilities with data
from other participants. In an NN model, each raw sample is fed
into the input layer, and its ground-truth label is compared with the
model’s prediction for loss calculation at the output layer. Therefore,
to preserve the privacy of each sample-and-label pair, both input and
output layers should be stored by each participant, while the rest
of the layers can be offloaded to the server, resulting in a tripartite
SplitGNN. This is in stark contrast to the standard bipartite Split
model where only the input layer is stored at each participant, while
the remaining layers can be offloaded to the server.

In more detail, in our tripartite SplitGNN, the forward steps at
each layer can be divided into three steps: it first calculates local
embedding at each participant individually with private data. Then,
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Algorithm 1 Heterogeneous Attention (HAT)
Input: the graph G = (V, E), Node features f𝑖 and Edge features e𝑖 ,

the set of pre-defined metapaths and all original relations
{𝜌1, 𝜌2, ..., 𝜌𝑛}, Hops number 𝑁 and multi-heads number 𝑀

Output: the result of node classification (𝑦), node embedding,
relation embedding

1: while 𝑛 = 1, 2, ..., 𝑁 do
2: while 𝜌𝑖 in {𝜌0, 𝜌1, ..., 𝜌𝑛} do
3: Feature Transformation f𝑙

𝑖
, e𝑙
𝑖
;

Feature Combination ℎ𝜌,𝑙
𝑖

according to Eq. 1;
4: while m=1,2,...,M do
5: Computing node attention coefficients 𝛼𝜌,𝑙,𝑚

𝑖,𝑗
adopting

Eq. 1;
6: end while
7: Node embedding Fusion to get z𝜌,𝑙

𝑖
as Eq. 3;

8: end while
9: while m=1,2,...,M do

10: Calculating path attention coefficients 𝛽𝜌,𝑙,𝑚
𝑖

based on
Eq. 6.

11: end while
12: Getting f𝑖𝑙+1 as node embedding in this layer by using Eq. 5.
13: end while
14: return node embeddings.

the semi-honest server collects non-private local embeddings to com-
pute global embedding. In the end, the server returns the final hidden
layer to the party that has labels to compute prediction and loss.
Participants and the server perform forward and back propagations
to complete model training and prediction, during which the private
data (i.e., features, edges, and labels) are always kept by participants
themselves.

Compared with our SplitGNN, the other relevant work Zhou [7]
exhibits the following weaknesses:

• The full dataset is used in each iteration, which incurs much
more communication cost;
• Data holders send their local node embeddings in plaintext

form to the server, which may incur privacy leakage;
• The server transmits the last hidden layer output in plaintext

to the data holder who has the label, which also poses privacy
issues.

2.3 ID alignment
The first step in collaborative modeling under vertical data split
setting is secure entity alignment, also known as Private Set Intersec-
tion (PSI). That is, in each communication round, participants align
their entities (nodes) without exposing those that do not overlap
with each other. The server should record all the overlapped entities
without knowing the details of any entity. Therefore, we need a
privacy-preserving protocol to conduct ID alignment. In this way,
the server will only aggregate the overlapped entity embeddings
from participants. Note that training and test sets for SplitGNN need
to be privately aligned among participants before the training and
test process start.

2.4 Local Node Embeddings
For public datasets (ACM and IMDB), in our work, we adopt the
pre-trained BERT [10] to generate node embeddings. For instance,
the movies’ names are encoded as 768 embeddings by using the
pre-trained BERT and deal the same operation with paper nodes in
the ACM dataset. In this way, we can get rich semantic information
of nodes, and keep similar nodes closer. In SplitGNN, participants
generate initial node embeddings using their own node features, indi-
vidually. For participant 𝑖 ∈ P, this can be done by h𝑖0 = (x

𝑖 )𝑇 ·W𝑖 ,
where x𝑖 and W𝑖 are node features and weight matrix of participant
𝑖. For local node embeddings, similar to the existing GNNs, we
perform multi-hop neighborhood aggregation on graphs using pri-
vate edge information individually. Under the data isolated setting,
neighborhood aggregation should be done by participants separately,
rather than cooperatively, to protect the private edge information.
This is because one may infer the neighborhood information of 𝑣
given the neighborhood aggregation results of 𝑘-hop (ℎ𝑘𝑣 (𝑖)) and
(𝑘 + 1)-hop (ℎ𝑘+1𝑣 (𝑖)), if neighborhood aggregation is done by par-
ticipants together. A special case is ℎ𝑘𝑣 (𝑖) = ℎ𝑘+1𝑣 (𝑖), where it is
likely that 𝑣 is an isolated node in the graph of participant 𝑖. There-
fore, to protect graph privacy, we let participants perform multi-hop
neighborhood aggregation separately using their own graphs.

For ∀𝑣 ∈ 𝑉 at each participant, neighborhood aggregation is
the same as the traditional GNN. Take GraphSAGE as an example,
GraphSAGE introduces aggregator functions to update hidden em-
beddings by sampling and aggregating features from a node’s local
neighborhood: the aggregator functions AGG are of three types, i.e.,
Mean, LSTM, and Pooling.

After participants generate local node embeddings, they need
to send their local node embeddings to a semi-honest server for
combination and further computations. Although the local node
embeddings ℎ𝑣 hide raw information of local graphs, it may still
encode the sensitive information of local graphs, hence participants
need to either encrypt or perturb the extracted embeddings before
sending to the server for further global computation.

2.5 Details of HAT
In this section, we will introduce how the HAT works and explain
the equations in it.

2.5.1 Metapath Sampling With Relation Features. In Hetero-
geneous Attention (HAT), both pre-defined metapaths and original
relations are taken to generate input subgraphs. For instance, in
IMDB dataset, original relations (𝑒.𝑔. actor, director) and metap-
aths (𝑒.𝑔. MDM, MAM) are adopted to sample subgraphs as inputs.
To capture more complex representations, when using pre-defined
metapaths, we concatenate all the features of nodes and edges lying
on the metapath. An example is shown in Figure 2. For the graph
sampling process, all the original relations of neighbors will be con-
sidered to generate input subgraphs. By contrast, random sampling
will miss some important information [11], leading to weak model
performance.

2.5.2 BERT Encoding. For machine learning, model performance
usually depends on the input features heavily. Previous works that
encode all words (description of each node) by adopting the one-hot
method to generate node features will drive node features to a sparse
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Algorithm 2 Privacy-preserving SplitGNN for node label prediction
(forward propagation)

Input: Graph G(V, E𝑖 ) and node features {f𝑖,𝑣,∀𝑣 ∈ V} on
participant 𝑖, 𝑖 ∈ P = {1, ..., 𝐼 }; depth 𝐾 ; aggregator functions

HAT𝑘 ,∀𝑘 ∈ {1, ..., 𝐾}; weight matrices W𝑘
𝑖 ,∀𝑖 ∈ P,∀𝑘 ∈ {1, ..., 𝐾};

max layer 𝐿; weight matrices W𝑙 ,∀𝑙 ∈ {0, ..., 𝐿}; non-linearity 𝜎;
neighborhood functions N𝑖 : 𝑣 → 2V ,∀𝑖 ∈ P; node labels on

participant 𝑝 ∈ P and 𝑐 ∈ 𝐶 ; 𝜌 ∈ Φ (relation sets)
Output: Node label predictions {𝑦𝑣𝑐 ,∀𝑣 ∈ V,∀𝑐 ∈ 𝐶} on

participant 𝑝
P1: private feature and edge related computations by participants

participants:
1: while 𝑖 ∈ P in parallel do
2: while 𝑘 = 1 to 𝐾, 𝑣 ∈ V, 𝜌 ∈ Φ do
3: f𝑘𝑣 (𝑖) ← HAT𝑘 ({f𝑘−1𝑢 (𝑖, 𝑢),∀𝑢 ∈ N𝑖 (𝑣)})
4: end while
5: h𝐾𝑣 (𝑖) = f𝐾𝑣 (𝑖),∀𝑣 ∈ V and sends (publishs) the to server
6: end while
P2: server-side layer computations by the interactive server as

shown in Figure 1
1: while 𝑣 ∈ V do
2: aggregates the local node embeddings from participants h𝐾𝑣 =

Aggregate ({h𝐾𝑣 (𝑖),∀𝑖 ∈ P})
3: forward propagation based on the global node embeddings

z𝐿 = 𝜎 (W𝐿−1 · 𝜎 (...𝜎 (W0 · h𝐾𝑣 )))
4: sends z𝐿 to participant 𝑝
5: end while

P3: private label related computations by participant who has label
participant 𝑝: makes prediction by

𝑦𝑣𝑐 ← softmax(W𝐿 · z𝐿),∀𝑣 ∈ V,∀𝑐 ∈ 𝐶

space. Instead, in our work, we transform the descriptions (names,
titles) of nodes to a node feature vector by adopting a pre-trained
BERT model [10]. We then derive the representation for each node
by averaging the produced node features weighted by each word’s
attention. In this way, we can make similar sentences become closer
in vector distance. Throughout this work, we take node feature di-
mension as 764. Additionally, the relation embedding is trainable,
which can be learned by the back-propagation technique.

2.5.3 Node Attention.

ℎ𝑙
𝑖

=𝑊 𝜏,𝑙 f𝑙𝑖 + 𝑏
𝜏,𝑙

𝑟
𝜌,𝑙

𝑖, 𝑗
=𝑊 𝜌,𝑙e𝑙𝑖 + 𝑏

𝜌,𝑙 (1)

ℎ
𝜌,𝑙

𝑖
= Φ(ℎ𝑙𝑖 , 𝑟

𝜌,𝑙

𝑖, 𝑗
)

where f𝑙
𝑖

and e𝑙
𝑖

refer to node features and edge features, ℎ𝑙
𝑖

and

𝑟
𝜌,𝑙

𝑖, 𝑗
are latent vectors of 𝑖-th node and the edge which is the relation

between the target node and 𝑖-th node in 𝑙-th layer of the 𝜌 relation,
respectively.𝑊 𝜏,𝑙 ∈ R𝐷𝑛×𝑑 and𝑊 𝜌,𝑙 ∈ R𝐷𝑒×𝑑 stand for transfor-
mation weights of the node (type 𝜏) and edge (relation 𝜌) in the 𝑙-th
layer respectively.

The function Φ represents the concatenation function which is
used to combine node and edge latent vectors. In fact, other func-
tions (𝑒.𝑔. linear transformation, element-wise addition) can be

adopted as well. ℎ𝜌,𝑙
𝑖

donates the node hidden status of 𝑙-th layer.
The feature transformation stage will be processed in each subgraph
for N𝜌

𝑖
. But for the target node, ℎ𝜌,𝑙

𝑖
= ℎ𝑙

𝑖
.

z𝜌,𝑙
𝑖

= F𝜌 (ℎ𝜌,𝑙𝑖 , ℎ
𝜌,𝑙

𝑗
) (2)

Where F𝜌 represents the aggregation function in the 𝜌 relation (or
metapath). z donates node’s hidden status embedding after node fu-
sion. After this step, for one specific relation, all nodes’ information
is treated as one vector which can represent all the information of
the target node, neighbor (middle neighbor) nodes, and relations
between them. Here, we adopt the attention mechanism to integrate
node embeddings into one vector.

z𝜌,𝑙
𝑖

= 𝜎 (
𝑀

∥
𝑚=1

∑
𝑗 ∈N𝜌

𝑖

𝛼
𝜌,𝑙,𝑚

𝑖,𝑗
ℎ
𝜌,𝑙

𝑗
) (3)

Here, 𝑀 is the multi-head number. In our work, we use Eq. (3)
to aggregate node embeddings when processing the fusion stage.
Where 𝜎 is an active function. To consider the impact of different
neighbor (middle neighbor) nodes on the target node, all neighbors
have calculated attention coefficients in a given relation 𝜌 .

𝛼
𝜌,𝑙,𝑚

𝑖,𝑗
=

𝑒𝑥𝑝 (ℎ𝜌,𝑙
𝑖
· ℎ𝜌,𝑙
𝑗
)∑

𝑘∈N𝜌

𝑖
𝑒𝑥𝑝 (ℎ𝜌,𝑙

𝑖
· ℎ𝜌,𝑙
𝑘
)

(4)

After this stage, every specific relation (metapath) would be simpli-
fied as one hidden state vector which contains all information of its
subgraphs.

2.5.4 Path Attention. In the heterogeneous graph, there may
exist multi-relations between two nodes. Based on this, path-level
attention is needed which can reflect how the target node is impacted
by different relations.

f𝑙+1𝑖 = 𝜎 (
𝑀

∥
𝑚=1

∑
𝜌

𝛽
𝜌,𝑙,𝑚

𝑖
zi𝜌,𝑙 ) (5)

𝛽
𝜌,𝑙,𝑚

𝑖
=

𝑒𝑥𝑝 (q𝜌𝑇 · z𝐶,𝑙
𝑖
)∑

𝜌
′ 𝑒𝑥𝑝 (q𝜌′𝑇 · z𝐶,𝑙

𝑖
)

(6)

where 𝛽𝜌,𝑙,𝑚
𝑖

, q𝜌𝑇 are the path-attention coefficient and the atten-

tion vector for 𝜌 relation in the 𝑙-th layer, respectively. z𝐶,𝑙
𝑖

is the

concatenation of all z𝜌,𝑙
𝑖

. After this process, we can obtain target all
node local embeddings f𝑙+1

𝑖
.

2.6 Server Aggregation
After receiving local node embeddings from all participants, the
semi-honest server generates global node embeddings by combining
local node embeddings. Based on the aggregated global node embed-
dings, the server can conduct the successive computations, e.g., the
non-linear operations such as max-pooling and activation functions
in deep network structures. Finally, the server returns the final hidden
layer to the party that has labels to compute prediction and loss. The
participant who has the label can compute the prediction using the
final hidden layer it receives from the server. For node classification
task, the Softmax activation function is used for the output layer,
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𝑗
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Figure 3: The overall workflow of HAT. The left graph is the original heterogeneous graph. Different colors present different node
and relation types. After sampling, it is divided into two subgraphs. In feature transformation, different node types’ features and edge
features are transferred into the same latent dimension size. In Step 4, the attention mechanism is adopted to extract information
from different nodes. Lastly, the path attention mechanism is used to add all relations’ information into the final embedding of this
layer. After looping all layers, the latent embedding is decoded by MLP.

which is defined as softmax(𝑧𝑐 ) = 1
𝑍

exp(𝑧𝑐 ) with 𝑐 ∈ 𝐶 be the node
class and 𝑍 =

∑
𝑐 exp(𝑧𝑐 ).

During each communication round in our framework, the server is
responsible for aggregating node embeddings from different partici-
pants, conducting aggregation on the overlapped node embeddings.
Note that during this procedure, all the private data (including node
attributes, edge information, labels, and local model gradients) re-
lated computations are carried out by participants locally, the server
knows nothing about local data, except the encrypted local embed-
ding.

In terms of embedding aggregation, the combination strategy
would be trainable in order to maintain high representational capac-
ity. We introduce three combination strategies, i.e., averaging, con-
catenation, and weighted averaging as follows. Note that adopting
averaging or weighted averaging in contrast to direct concatenation
allows the server’s input dimension to remain fixed – independent of
the number of participants.

Average. The average operator takes the elementwise average of
the vectors in ({h𝐾𝑣 (𝑖),∀𝑖 ∈ P}), assuming participants contribute
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equally to the global node embeddings, i.e.,

h𝐾𝑣 ← Average({h𝐾𝑣 (1), h𝐾𝑣 (2), · · · , h𝐾𝑣 (𝐼 )}) (7)

Concatenation. The concatenation operator can fully preserve
local node embeddings learnt from different participants. The opera-
tion can be written as bellow:

h𝐾𝑣 ← Concat({h𝐾𝑣 (1), h𝐾𝑣 (2), · · · , h𝐾𝑣 (𝐼 )}) (8)

Weighted Average. The average strategy treats participants equally.
In reality, the local node embeddings from different participants may
contribute diversely to the global node embeddings. We propose a
weighted averaging strategy to handle this situation. The weighted
average operator aims to aggregate the embedding elements from par-
ticipants through a regression model, whose parameters are learned
intelligently during training. Let 𝝎𝒊 be the weight vector of local
node embeddings from participant 𝑖 ∈ P, then

h𝐾𝑣 ← 𝝎1 ⊙ h𝐾𝑣 (1) + 𝝎2 ⊙ h𝐾𝑣 (2) ... + 𝝎𝑰 ⊙ h𝐾𝑣 (𝐼 ) (9)

where ⊙ is element-wise multiplication. Regression can handle the
situation where the data quality and quantity (feature and edge size)
of participants are different from each other.

These different combination operators can utilize local node em-
beddings in diverse ways, and we will empirically study their effects
on model performances in Sec. 3.

We summarize the process of our privacy-preserving SplitGNN
in Algorithm 2. P1 describes how participants generate local node
embeddings separately (Section 2.4), i.e., perform multi-hop neigh-
borhood aggregation using edge information. P2 corresponds to the
computations by the server-side layers, where Line 10 shows how
to generate global node embeddings on the server (Section 2.6). P3
shows how the server makes forward propagation to get the last
hidden layer. Line 14 shows how the participant who has the label
conducts private label-related computations using the last hidden
layer.

2.7 Privacy Preservation
Unlike previous works that assume only samples (nodes) are held
by different parties and these samples have no relationship, our task
is more challenging: for decentralized graph structure data, both
nodes and edges are kept by different participants, GNN relies on
the relationships between nodes, which makes most of the privacy
learning methods designed for conventional datasets infeasible. In
particular, we want to ensure that all the forward and backward
communications between the participating entities (e.g., the smashed
data and gradients between participants and the server) are performed
in an encrypted form. To be concrete, we consider privacy from the
following perspectives: (1) how to align ID in a privacy-preserving
manner; (2) how to aggregate local node embeddings in a privacy-
preserving manner.

For privacy-preserving ID alignment, each participant only shares
their hashed node index list with the server. The hashed index list is
used to index and distinguish nodes from all local graphs to hide the
raw index information from the server.

For the privacy-preserving aggregation of local node embeddings,
since each local subgraph contains sensitive information about nodes,
edges, attributes, and labels, the value of intermediate features has
the potential risk to reveal sensitive information about the input

data [12]. Henceforth, the intermediate representations should be
transmitted in a secure and communication-efficient way. To provide
the provable privacy guarantee, various privacy-preserving tech-
niques can be considered, including secure aggregation [13], dif-
ferential privacy (DP) [14]. To provide high security guarantees
against the semi-honest server, we adopt homomorphic encryption
(HE) [15] (Section 2.6). In this way, the server can only decrypt the
aggregation of local embeddings.

3 EXPERIMENTS
3.1 Dataset, Task and Parameters
We evaluate our SplitGNN on two real-world datasets (ACM and
IMDB) with multiple classes. There are multi-classes for both ACM
and IMDB. Throughout this work, the Micro F1 score is adopted as
the evaluation metric for node classification.

Parameters Setting. We perform batch gradient descent, i.e., we
sample a batch of nodes (𝐵 = 512) in each communication round
and report the performance after five communication rounds. We
set the L2 regularisation as 1e-4. For all models, we use Relu as
the active function of neighbor propagation, and the active function
of hidden layers. For the deep neural network on the server, we set
the dropout rate to 0.3 and network structure as (𝑑, 𝑑, |𝐶 |), where
𝑑 ∈ {32, 64, 128} is the dimension of node embeddings and |𝐶 | is the
number of classes.

Baselines. We compare with the following baselines.
• Standalone. Each participant trains its own GNN on their

limited local data without any collaboration. Hence, it cannot
utilize information from other participants.
• Entire. All participants pool their local data to a central server,

which trains a global GNN on all the combined data. Note
that this setting violates privacy protection because data are
directly exposed during the procedure of collection.

3.2 Experimental Results
We first summarize the results in Table 1, where SplitGNN𝑚 , SplitGNN𝑐 ,
and SplitGNN𝑤 denote SplitGNN with Average, SplitGNN with
Concatenation, and Trainable Weighted Average combination strate-
gies. It can be clearly observed that our SplitGNN significantly
outperforms the GNNs by using the isolated data and has compara-
ble performance with the traditional GNN by using the entire plain
data insecurely. The reason is straightforward: the learned global
node representation of SplitGNN is similar to that learned over the
combined graph.

We next explore how the interactive layer strategy, number of
participants, and partition ratio affect model performance.

3.2.1 Impact of the interactive layer strategy. From Table 1,
we find that the concatenation strategy performs the best generally.
This is because the concatenation strategy can more fully integrate
nodes’ information coming from different clients. Moreover, we also
find that our HAT works well on all datasets and strategies since
it treats different relations with different attention coefficients, and
values more important relations with higher weights intelligently.

3.2.2 Impact of the number of participants. We vary the num-
ber of participants in {2, 4, 8} and study the performance of Split-
GNN. We report the results in Table 2, where we use the ACM
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Table 1: Micro F1 Score of different base GNN models (Data is
vertically partitioned (Ratio=5:5) among 2 participants 𝐴 and
𝐵).

Dataset Strategy GCN GAT HAT
ACM Entire 0.9007 0.9028 0.9158

Standalone𝐴 0.7075 0.7134 0.7282
Standalone𝐵 0.7087 0.7146 0.7307
SplitGNN𝑤 0.8812 0.8837 0.8903
SplitGNN𝑐 0.8827 0.8864 0.8984
SplitGNN𝑚 0.8811 0.8816 0.8960

IMDB Entire 0.5549 0.5396 0.5694
Standalone𝐴 0.4273 0.4188 0.4429
Standalone𝐵 0.4209 0.4185 0.4403
SplitGNN𝑤 0.5385 0.5267 0.5567
SplitGNN𝑐 0.5489 0.5251 0.5573
SplitGNN𝑚 0.5433 0.5235 0.5562

dataset and assume participants have even feature and edge data.
We find that, as the number of participants increases, the accuracy
of all the models decreases, and the gaps widen with the increase
of participants. We hypothesize this is because the neighborhood
aggregation in SplitGNN is done by each participant individually
for privacy concerns, and each participant will have fewer edge data
when there are more participants since they split the original edge
information evenly. Therefore, when more participants are involved,
more information is lost during the neighborhood aggregation proce-
dure.

Table 2: Micro F1 Score of different base GNN models (Dataset:
ACM, Strategy: concatenation, Ratio: equal size).

Clients GCN GAT HAT
Entire 0.9007 0.9028 0.9158

2 0.8827 0.8864 0.8984
4 0.8753 0.8778 0.8903
8 0.8654 0.8670 0.8811

3.2.3 Impact of data distribution. In the real scenario, partici-
pants may have different data distributions (i.e. domains), exhibit-
ing statistical heterogeneity. For example, distinct participants may
speak different languages, take pictures at different locations. Under
non-IID setting, it is common that the accuracy and convergence
speed of distributed learning may be significantly degraded [16].

To investigate how the data distribution impacts the model perfor-
mance, we study this by varying the proportion (Prop.) of data (node
features and edges) held by A and B in 5:5, 3:7, 1:9. The results on
Cora dataset are shown in Table 3. Based on results, we find that with
the proportion of data held by A and B is even, i.e., from 1:9 to 5:5,
the performances of most strategies tend to decrease. This is because
the neighbor aggregation is done by data holders individually, and
with a larger proportion of data held by a single holder, it is easier
for this party to generate better local node embeddings.

Table 3: Micro F1 Score of different base GNN models (Dataset:
ACM, Strategy: concatenation).

Ratio GCN GAT HAT
Entire 0.9007 0.9028 0.9158

5:5 0.8827 0.8864 0.8984
3:7 0.8908 0.8928 0.9059
1:9 0.8998 0.9022 0.9183

3.3 Complexity Analysis
During the training process, we conduct mini-batch training. Com-
munication cost is dependent on both the message size in each com-
munication round and the total number of communication rounds,
hence it can be expressed as O(𝐵 ∗𝑒 ∗𝑅), where 𝐵, 𝑒, and 𝑅 represent
the sampled batch size, embedding size, and communication rounds
respectively. For FL, the communication cost is relative to𝑂 (𝑃 ∗𝑁 ),
here 𝑃 and 𝑁 denote the number of model’s parameters and the
number of clients, respectively.

Compared with FL, SL is more communication efficient with
an increase in the number of participants or model size [17], and
decrease with the scale of dataset (There are 12499 and 4780 nodes in
ACM and IMDB). In contrast, in FL, the communication efficiency
will skyrocket, when the number of participants is large, as shown
in Figure 4.

Figure 4: SplitGNN Complexity Analysis.

4 EXPERIMENTS ON REAL DATASET
As introduced above, we find that our SplitGNN is effective and
HAT is suitable for heterogeneous graphs. Next, we will adopt them
to deal with the real industrial dataset which is a real fintech dataset
from Alipay 2 - the world’s leading mobile payment platform serving
more than 450 millions of users.

4.1 Data Introduction
As shown in Fig. 4, there is a huge difference in the magnitude of
the two sides on the real dataset. After the PSI process, party A has
1132511 nodes and 2371270 relations which means all nodes in party
B are overlapped with the party A. In addition, labels are provided
2https://en.wikipedia.org/wiki/Ant_Financial

https://en.wikipedia.org/wiki/Ant_Financial


Conference’17, July 2017, Washington, DC, USA Xiaolong Xu, Lingjuan Lyu, Yihong Dong, Yicheng Lu, Weiqiang Wang, and Hong Jin

by party B with two classes. The proportion of positive and negative
samples is about 0.12%. Although the number of the relation types
in parts A and B is the same, the meanings they represent are very
different. In A, relation types are cash transfer and social relation.
But for B, they mean similarity and medium shared.

4.2 Settings and Results
For the real dataset, we set the batch size as 512. Because of the
uneven proportion of positive and negative samples, we have tried
upsampling for negative samples 3, 5, and 10 times. We find that
the 5 times upsampling has the best performance. The hidden size,
dropout ratio, and L2 are set as 128, 0.3, and 0.0001, respectively.
Besides, as mentioned above, HAT has better capability than other
base models. For the real dataset, we adopt HAT as the base model.

Based on Table 5, the results show that the concatenation strategy
performs best. This is because the concatenation strategy can fully
integrate nodes’ information coming from these two participants, as
mentioned before.

5 PRELIMINARY AND RELATED WORK
5.1 Federated Learning
Federated learning (FL) enables a multitude of participants to con-
struct a joint ML model without exposing their private training data.
In recent years, FL has benefited a wide range of applications such
as named entity recognition [18], Native Ad CTR Prediction [19],
etc. FL offers a privacy-aware paradigm of model training that does
not require data sharing. However, in FL, each participant needs to
train a whole model.

One of the standard aggregation methods in FL is FedAvg [20],
where parameters of local models are averaged element-wise with
weights proportional to the client data size. However, FedAvg is
designed for horizontal data split settings, which cannot be directly
used in vertical data split setting. Additionally, recent works [21]
attempt to extend federated learning to vertical settings under less
realistic assumptions, where one party has data, but the other party
has labels only. The differences between Horizontal and Vertical
settings are listed in Table 6.
5.2 Split Learning
Split learning (SL) [22] aims to tackle with high communication cost
between cloud and participant, the limited memory of edge devices,
and the high computation of local model. In SL, a whole computation
graph of neural network W is split into two portions: participant-
side layers (WC, from first layer to 𝑘 layer) and server-side layers
(WS, from 𝑘 + 1 layer to output layer). SL allows participants to
calculate the private data-related computations individually and get
a hidden layer, and then let a server make the rest computations [6].
By connecting the lower layers with shared upper layers stored on
a parameter server, each device uploads its NN activations of the
split layer (i.e., participant-side network’s last layer) to the server to
calculate the loss values, and downloads the gradients to update its
participant-side network.

SL and FL are all collaborative deep learning techniques. The key
difference lies in whether the model is split and trained separately
or not. In terms of data privacy, in FL, the server has access to the
entire model. In contrast, the server has only access to the server-
side portion of the model and the smashed data (i.e., activation

vectors of the split layer) from each participant. In contrast to FL, SL
provides better privacy due to the model architecture split between
the participants and the server. The extracted representations from
the split layer are considered to contain less information than the
original data, and the inversion from representations is strictly more
difficult than recovery from the model or gradient information [23].
Meanwhile, SL provides a more practical paradigm for participants
with limited resources (edge devices in IoT), as participants only
need to train the first few layers of the split ML network model,
instead of running the complete network, which requires significant
computation on resource-constrained devices.

Our model differs from the traditional split learning in mainly
two aspects. First, we train a GNN rather than a simple neural
network. Second, we use cryptographic techniques for participants
to aggregate their local node embeddings in a privacy-preserving
manner rather than sharing their plain embeddings. Please see the
supplementary material for detailed related work.

5.3 Graph Neural Network
GNN extended existing neural networks for processing the data
represented in graph domains. The key of GNN is to learn a function
𝑓 to generate node embeddings h𝑣 for each node 𝑣 in a graph based
on its own features x𝑣 and neighbors’ features x𝑢 , 𝑢 ∈ N (𝑣), with
N(𝑣) denoting the neighborhood function in a graph [24]. After
this, with the generated node embeddings, one can do further tasks
such as classification [25], link prediction [26], and recommendation
[27] using deep neural networks. In this paper, we focus on the
node classification task. The key to this task is the design of an
aggregator function, which learns to aggregate feature information
from the node’s local neighborhood [28]. To date, different types of
aggregator functions have been proposed, e.g., convolution-based
[29], gated mechanism based [30], and attention based [31].

For node representation, there is a range of methods with or
without metapaths. For node representation with metapaths, Meta-
path2Vec [32] is used to generate node embeddings which can be
treated as features for the next step. Heterogeneous information
networks to vector (HIN2vec) [33] carries out multiple prediction
training tasks to learn representations of nodes and metapaths of
a heterogeneous graph. Given a metapath, HERec [34] converts a
heterogeneous graph into a homogeneous graph. Based on metapaths
and neighbors, HERec applies a DeepWalk model [35] to learn the
node embedding of the target type. Moreover, the metapath is used to
generate subgraphs for graph neural networks. Wang 𝑒𝑡 𝑎𝑙 . introduce
heterogeneous graph attention network (HAN) [36], which uses the
metapath to sample neighbors and all input nodes will be of the same
type. On the other hand, there are many methods without metapaths.
For example, in RGCN [37], every relation (including self-loop) is
aggregated in one block which will be added together to get the
final embedding. Heterogeneous graph neural networks (HetGNN)
[38] use the random walk to sample neighbors. HetGNN then aggre-
gates messages considering the effects of different node types. Ziniu
𝑒𝑡 𝑎𝑙 . [39] propose heterogeneous graph transformer (HGT) that
designs node- and edge-type dependent parameters to characterize
the heterogeneous attention over each edge.

Although all the above methods can learn node embedding, they
have overlooked the relation importance in heterogeneous graphs.
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Table 4: Node and Edge in Real Dataset.

Party Node Relation Relation type Node Features Edge Features
A 19206184 14132228265 4 155 2
B 1132511 105392 2 76 2

Table 5: Micro F1 Score of different base GNN models (Dataset:
Real Data).

Strategy HAT
Entire 0.8601

SplitGNN𝑐 0.8574
SplitGNN𝑤 0.8493
SplitGNN𝑚 0.8367

Table 6: Graph-structured data partition

Mode Nodes Edges Features

Horizontal different different aligned
Vertical aligned not limited not limited

This gap can however be filled by other methods. For example,
Weighted-GCN (WGCN) [40] assigns a learnable scalar weight to
each relation and multiplies an incoming “message” by this weight.
However, WGCN only learns a scalar, rather than relation embed-
dings.

5.4 Additively Homomorphic Encryption
A homomorphic encryption scheme allows arithmetic operations
to be directly performed on ciphertexts, which is equivalent to a
specific linear algebraic manipulation of the plaintext. Existing ho-
momorphic encryption techniques can be categorized into: 1) fully
homomorphic encryption, 2) somewhat homomorphic encryption,
and 3) partially homomorphic encryption. Fully homomorphic en-
cryption can support arbitrary computation on ciphertexts but is less
efficient [41]. On the other hand, somewhat homomorphic encryp-
tion and partially homomorphic encryption are more efficient but are
specified by a limited number of operations [42–45]. Well-known
partially homomorphic encryption schemes include RSA [43], El
Gamal [44], Paillier [45], etc. The homomorphic properties can be
described as:

𝐸𝑝𝑘 (𝑚1 +𝑚2) = 𝑐1 ⊕ 𝑐2
𝐸𝑝𝑘 (𝑎 ·𝑚1) = 𝑎 ⊗ 𝑐1

where 𝑎 is a constant, 𝑚1, 𝑚2 are the plaintexts that need to be
encrypted, 𝑐1, 𝑐2 are the ciphertext of𝑚1,𝑚2 respectively.

5.5 Background for Heterogeneous Graph
Definition 1 (Heterogeneous Graph [46]). A directed graph can

be written as G = (V, E). Here, V and E are sets of multiple
type nodes and multiple type relations belonging to G. Moreover,
heterogeneous graph is associated with a node mapping function 𝜙 :
V → A and a link mapping function 𝜒 : E → R.A and R represent
the sets of pre-defined node types and relation types. In addition, it
should be satisfied with the requirement |A| + |R| >= 2.

EXAMPLE 1. The sample of IMDB dataset consists of three node
types, 𝑖 .𝑒 ., director (D), moive (M) and actor (A) and two relation
types, 𝑖 .𝑒 ., direct and act. All nodes and relations assemble setsV
and E, respectively. Also, in this heterogeneous graph, |A| + |R| >=
2 holds.

Definition 2 (Metapath [47]). A metapath 𝜌 is defined as a path

lying on heterogeneous graph G in the form of 𝐴1
𝑅1−→ 𝐴2

𝑅2−→
· · · 𝑅𝑙−→ 𝐴𝑙+1 (also written as 𝐴1𝐴2 · · · 𝐴𝑙+1), which describes a
composite relation 𝑅 = 𝑅1 ◦𝑅2 ◦ · · ·𝑅𝑙 between𝐴1 and𝐴𝑙+1, where ◦
refers to the composition operator on relations. For a heterogeneous
graph, two nodes can be connected by the pre-defined metapaths.
Such metapaths can be considered as heuristic methods and the
rules of the definition of metapaths typically come from the expert’s
experience.

EXAMPLE 2. Movie 𝐴 and movie 𝐵 share the same director pre-
senting as𝑀𝑜𝑣𝑖𝑒−𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟−𝑀𝑜𝑣𝑖𝑒 (𝑀𝐷𝑀) by metapath. Similarly,
actor 𝐴 and actor 𝐵 can be written as 𝐴𝑐𝑡𝑜𝑟 −𝑀𝑜𝑣𝑖𝑒 − 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 −
𝑀𝑜𝑣𝑖𝑒 − 𝐴𝑐𝑡𝑜𝑟 (𝐴𝑀𝐷𝑀𝐴) which indicates these two actors are
connected by the same director 𝐷 .

Definition 3 (Metapath neighbors and middle neighbors [36]).
Given a specific metapath 𝜌 and a node 𝑖 in a heterogeneous graph,
the metapath neighbor N𝜌

𝑖
of metapath 𝜌 for node 𝑖 is defined by

the set of last nodes connected with 𝑖 by metapath 𝜌 . Let 𝑆𝜌
𝑖

denote
the set of nodes lying on the metapath 𝜌 of 𝑖. The middle neighbor
is defined by P𝜌

𝑖
= 𝑆

𝜌

𝑖
− N𝜌

𝑖
− {𝑖}.

EXAMPLE 3. If we define a metapath between actor A and actor
B by𝐴𝑐𝑡𝑜𝑟 −𝑀𝑜𝑣𝑖𝑒 −𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 −𝑀𝑜𝑣𝑖𝑒 −𝐴𝑐𝑡𝑜𝑟 (𝐴𝑀𝐷𝑀𝐴). We say
actor B is a metapath neighbor of actor A, and {movie A, director A,
movie B} is the set of middle nodes within this pre-defined metapath.

6 CONCLUSION AND DISCUSSION
In this paper, we have presented a novel approach, named SplitGNN,
which splits the computation graph of GNN by leaving the private
data-related computations to participants and delegating the rest
computations to the server. To learn various types of nodes and
edges in the heterogeneous graphs under the vertically partitioned
setting, we have proposed a novel algorithm called HAT. We also
conducted the communication efficiency experiment, the result of
which demonstrated our SplitGNN incurs lower communication
costs than FL.

In addition to HE considered in our work, previous works have
applied DP on the local node embeddings [12, 48] when the server
generates global node embeddings, to further protect potential in-
formation leakage. Compared to the encryption-based schemes, DP-
based approaches are more computationally efficient [49], however,
it may hurt the utility. Therefore, we leave the comparative perfor-
mance analysis of SplitGNN with the integration of DP to future
work.
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