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Abstract—The application of graph representation learning
techniques to the area of financial risk management (FRM)
has attracted significant attention recently. However, directly
modeling transaction networks using graph neural models re-
mains challenging: Firstly, transaction networks are directed
multigraphs by nature, which could not be properly handled with
most of the current off-the-shelf graph neural networks (GNN).
Secondly, a crucial problem in FRM scenarios like anti-money
laundering (AML) is to identify risky transactions and is most
naturally cast into an edge classification problem with rich edge-
level features, which are not fully exploited by the prevailing
GNN design that follows node-centric message passing protocols.
In this paper, we present a systematic investigation of design
aspects of neural models over directed multigraphs and develop
a novel GNN protocol that overcomes the above challenges
via efficiently incorporating directional information, as well as
proposing an enhancement that targets edge-related tasks using
a novel message passing scheme over an extension of edge-to-
node dual graph. A concrete GNN architecture called GRANDE
is derived using the proposed protocol, with several further
improvements and generalizations to temporal dynamic graphs.
We apply the GRANDE model to both a real-world anti-money
laundering task and public datasets. Experimental evaluations
show the superiority of the proposed GRANDE architecture over
recent state-of-the-art models on dynamic graph modeling and
directed graph modeling.

I. INTRODUCTION

Recent years have witnessed an increasing trend of adopting
modern machine learning paradigms to financial risk man-
agement (FRM) scenarios [25]. As a typical use case in
operational risk scenarios like fraud detection and anti-money
laundering, the identification of risky entities (user accounts
or transactions) is cast into a supervised classification problem
using behavioral data collected from the operating financial
platform [6], [20]. For institutions like commercial banks
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and online payment platforms, the most important source
of behavior information is the transaction records between
users. making transaction networks (with users as nodes and
transactions as edges) a direct and appropriate data model. Un-
like standard pattern recognition tasks like image recognition
where decisions are made according to information of indi-
vidual objects, identification of risky patterns over transaction
network requires reasoning beyond any individual scope. The
phenomenon is particularly evident in the area of anti-money
laundering (AML), where suspicious transactions are usually
related by several users or accounts, with transactions between
them being highly correlated, thereby exhibiting a cascading
pattern which makes i.i.d. approaches in machine learning
unsuitable. The surging developments of machine learning
models over graphs, especially graph representation learning
[11], have attracted significant attention in the financial indus-
try and have shown promising results in the area of FRM [23],
[21]. The dominant practice in graph representation learning
is to utilize the panoply of graph neural networks (GNN)
[3] that produce node-level representations via principled
aggregation mechanisms which are generally described via
message passing protocols [9] or spectral mechanisms [16].

Despite their convincing performance, the majority of the
existent GNN models operate over undirected graphs, which
makes them inadequate for the direct modeling of transaction
networks. Firstly, many graphs that arise in FRM applications
are directed by nature: i.e., in the case of a transaction network
with users as nodes and transactions as edges, the direction
of an edge is typically understood as the direction of its
corresponding cash flow. In areas like anti-money laundering
(AML), directional information is generally perceived to be
of significant importance and shall not be neglected [28].
Secondly, there might exist multiple transactions between
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Fig. 1: Illustration on the deficiency of the directed message
passing protocol in [3]: suppose the node of interest is n0,
using GNNs designed according to the protocol in [3], it
becomes impossible for n0 to aggregate information of n9
and n10. Under the context of financial risk management,
suppose n9 and n10 corresponds to known fraudsters, and
edges correspond to transactions. Although the riskiness of
n5 might be undetermined, the transaction pattern makes it
highly suspicious and therefore uplifts the riskiness of n0. To
build models that behave coherently with the above reasoning
process, GNN protocols that aggregates information from both
directions are required

certain pairs of users. Thirdly, transactions are naturally as-
sociated with timestamps that indicate the time of occurrence.
Therefore, to fully utilize the graphical structure of transaction
networks, we need representation learning frameworks that
support temporal directed multigraphs. While recent progress
on dynamic graph neural networks [38], [15] provide ap-
propriate methods to handle temporality, discussions over
neural architectures that supports directed multigraphs remains
nascent [9], [24], [31], [30], [44].

From a practical point of view, the targeted risky entities
may be either node (i.e., malicious users) or edges (i.e., suspi-
cious transactions). Conventional GNN architectures produce
node-level representations via encoding information of each
node’s rooted subtrees [39], making them a good fit for user
or account level risk identifications. When the underlying task
is to detect risky transactions, the prevailing practice is to
present edges using a combination of node representations
corresponding to both ends of edges. While such design may
be adequate for tasks like link prediction, it lacks a way
to effectively integrate edge-level information into the edge
representation. Since financial networks usually contain rich
edge-level features (i.e., detailed transaction-related informa-
tion), refinements on edge-level representations are needed.
For example, to accurately represent a transaction, we need to
combine the information of its buyer (cash sender) and seller
(cash receiver), and the transaction-related information, with
each of them requiring aggregating relevant information from
related users and transactions. A recent line of work [13], [4],
[14] focused directly on learned edge representations using
the idea of edge-to-node duality and obtained satisfactory
performance over downstream tasks like edge classification.
However, previous works on edge representation learning
all applies to undirected graphs, making the extension to
transaction networks highly non-trivial.

In this paper, we propose a general message passing neural

network protocol that simultaneously outputs node and edge
representations over directed multigraphs. Based on this pro-
tocol, we derive a GNN architecture called GRANDE with
an extension to temporal graphs that efficiently leverages the
underlying structural property of transaction networks. More
specifically, we summarize our contribution as follows:
• We develop a novel bi-directional message passing protocol

with duality enhancement (BiMPNN-DE) that strengthens
previous proposals over message passing neural architec-
tures over directed multigraphs. The improvement is two-
fold: Firstly, it effectively combines neighborhood infor-
mation from both incoming and outgoing edges of nodes.
Secondly, it simultaneously outputs node and edge repre-
sentations via performing message passing over both the
original graph and its augmented edge adjacency graph.

• We derive a concrete GNN architecture following the pro-
posed BiMPNN-DE protocol called GRANDE, that devices
the acclaimed transformer [32] mechanism for neighborhood
aggregation. The proposed GRANDE framework is made
compatible with temporal directed multigraphs through the
integration of a generic time encoding module that further
extends previous works on dynamic graph modeling [38].

• To show the practical effectiveness of GRANDE, we apply it
to a suspicious transaction identification task in anti-money
laundering, with the underlying transaction network data
collected from one of the world’s leading online payment
platforms. Comparisons against various undirected and di-
rected GNN baselines show the superiority of the proposed
model. We also provide evaluations on two public datasets
generated from transaction networks to further verify the
strength of GRANDE framework when underlying graph
features are relatively weak.

II. METHODOLOGY

A. Problem formulation
Under the context of financial risk management, we consider
the following event stream representation of recorded transac-
tion data that are available in most online transaction systems:

E = {(u1, v1, t1, χ1), (u2, v2, t2, χ2), . . .} (1)

Each event (u, v, t, χ) is interpreted as a transaction from user
u to user v that occurred at time t, with related features χ
that could often be further decomposed as user-level features
like user account information, and event-level features like
transaction amount and channels. In this paper, we focus on
the representative task of transaction property prediction that
typically takes the form of binary classification that aims at
identifying illicit or fraudulent transactions. The task could
be cast into a graph learning problem of edge classification
in a straightforward manner. We consider the temporal graph
modeling paradigm [15] that views the underlying temporal
graph as being generated from the event stream E . Therefore,
given a time period T = [τstart, τend], we construct the graph
data as the snapshot G(T ) = (V (T ), E(T )) of the underlying
temporal graph. Since there may exist multiple transactions
between the same set of users, we consider G(T ) to be a



directed multigraph with each edge in the edge multiset E(T )
represents an event that happens inside the time interval T , and
the node set V (T ) consists of related users corresponding to
the included events. During the training stage, we construct
a snapshot G(Ttrain), and obtain a possibly incomplete set of
edge labels that are understood as edge properties annotated
using expert knowledge. During testing stage, we perform
inference over snapshots G(Ttest) that are based on later time
intervals than Ttrain. We assume Ttrain ∩ Ttest = ∅, hence
the problem of interest could be viewed as inductive edge
classification over temporal graphs.

B. Message passing protocols and directed graphs
Let G = (V,E) be a directed multigraph with node set V
and edge multiset E. For any pairs of nodes (u, v), denote
µ(u, v) as the number of edges going from u to v. Then G
becomes a (simple) graph when maxu∈V,v∈V µ(u, v) ≤ 1.
For each v ∈ V , denote N+(v) = {u, (v, u) ∈ E} and
N−(v) = {u, (u, v) ∈ E} as its out-neighborhood and in-
neighborhood respectively, and let N(v) = N+(v) ∪ N−(v)
be its neighborhood. For the sake of presentation clarity, we
will overload the notation uv for both an edge in the undirected
graph, or a directed edge from u to v in a directed (multi)graph
from time to time, with its exact meaning being clear from the
context. We are interested in the general case where both node
features X = {xv}v∈V and edge features Z = {zuv}(u,v)∈E

are available, where we assume both kinds of features to be of
dimension d. In this paper we focus on neural approaches to
such directed multigraphs. A good starting point is the neural
message passing scheme for undirected graphs [9]: let h(l)v

denote the hidden representation of node v at the l-th layer
of the network, and h(0)v = xv,∀v ∈ V . The message passing
graph neural network protocol (abbreviated as GNN hereafter)
is described recursively as:

h
(l+1)
v = COMBINE

(
h
(l)
v ,AGG

(
MESSAGE(h(l)v , h

(l)
u , zuv, u ∈ N(v))

))
(2)

Different combinations of COMBINE, AGG and MESSAGE
mechanisms thus form the design space of undirected GNNs
[41]. To the best of our knowledge, there are three types of
generalization strategies to directed graphs:
Symmetrization The most ad-hoc solution is to ”make it
undirected” via padding necessary reverse edges so that
N(v) = N+(v) = N−(v), and apply standard graph neural
networks that operate on undirected graphs like GCN or
GAT. Despite its simplicity and clearness, the symmetrization
approach discards directional information in the digraph and
may raise subtleties when dealing with multigraphs.
DiGraph-theoretic motivations A more recent line of work
[24], [31], [30], [44] drew insights from directed graph theory,
especially the spectral branch [7]. The proposed models are
mostly digraph analogs of GCN, without the consideration for
edge features, therefore severely limiting the design space of
directed message passing GNNs.
Directed Protocol In the seminal work [3, Algorithm 1], the
authors proposed a GNN protocol that operates on directed
multigraphs with edge features via aggregating messages from

only the in-neighborhood, i.e., replacing N(v) in (2) with
N−(v)). 1 While being a natural extension, such kind of GNN
protocol losses information from the outgoing direction of
each node. We present a pictorial illustration in figure 1.

To address the aforementioned shortcomings, we propose a
novel GNN protocol that operates on directed digraphs termed
bi-directional message passing neural network (BiMPNN).
The protocol extends the standard undirected protocol (2) via
enabling each node to aggregate information from both its in-
neighborhood and out-neighborhood:

h(l+1)
v = MERGE

(
ϕ(l+1)
v , ψ(l+1)

v

)
ϕ(l+1)
v = COMBINEin

(
h(l)v ,

AGGin

(
MESSAGEin(h

(l)
v , h(l)u , zuv, u ∈ N−(v))

))
ψ(l+1)
v = COMBINEout

(
h(l)v ,

AGGout

(
MESSAGEout(h

(l)
v , h(l)r , zvr, r ∈ N+(v))

))
(3)

Despite being more complicated than the undirected protocol,
the proposed BiMPNN protocol remains conceptually clear:
for each layer, we aggregate separately from each node’s in-
neighborhood and out-neighborhood using distinct aggregation
mechanisms, and merge the two obtained intermediate repre-
sentations into the next layer’s input. Consequently, a k-layer
GNN derived from the BiMPNN protocol utilizes both its root-
k incoming subtree and outgoing subtree, thereby providing a
richer set of relational inductive bias than the one proposed
in [3].

C. Edge-level task and edge-to-node duality
The BiMPNN protocol (3) provides a principled way of
obtaining node representations in directed multigraphs which
serves as the building block of node-level tasks. Yet another
important type of graph-related tasks (in a local sense [27])
is edge-level tasks, which exhibits a dichotomy between edge-
existence prediction, i.e., link prediction, and edge-property
prediction, i.e., edge classification. For the later task type, the
very existence of an edge itself suggests basing the predictions
on a properly defined edge representation, which should
go beyond naively concatenating node representations of its
ends [14]. Although the protocol (3) implicitly encodes edge
features into node representations, it ignores the cascading
dynamics of edges (i.e., information implied by cash flow
in FRM applications). To build powerful edge representa-
tions that efficiently adapt to the underlying graph structure.
Mechanisms based on the edge-to-node dual graphs, or line
graphs, have been proposed [5], [13], [4], [14] under the
undirected GNN protocol (2). To begin our discussion on
possible extensions to directed multigraphs, we first review
the definition of line graphs as follows:

1The original version also considered incorporation of a global node that
aggregates information from the whole graph regardless of the connectivity
structure. While such design choice may have some gains in moderate size
graphs [36], it does not scale to large graphs. Therefore we will not consider
such design choice in this paper



Definition 1 (Line graph and Line digraph [10], [2]). For
both undirected graph and directed (multi)graphs where we
overload notation without misunderstandings, G = (V,E), the
node set of its line graph L(G) = (L(V ), L(E)) is defined as
its edge (multi)set L(V ) = E.
Undirected graph the edge set of its line graph is defined as

L(E) = {(uv, rs) : (u, v) ∈ E, (r, s) ∈ E, {u, v} ∩ {r, s} ≠ ∅} (4)

Directed (multi)graph the edge set of its line graph is defined
as

L(E) = {(uv, rs) : (u, v) ∈ E, (r, s) ∈ E, v = r} (5)

For undirected graphs, their line graphs provides a natural
way to update edge representations under standard message
passing protocols like (2). However, trivially extending (3)
using the definition of line digraphs may incur significant
information loss: We take the graph in figure 1 as an example,
its line graph has an empty edge set, which makes the message
passing framework useless over the derived line graph. While
the graph-theoretic definition enjoys some nice properties [2],
the adjacency criterion might be overly stringent for deriving
useful GNN architectures. Intuitively, we may expect different
transactions triggered by the same account as correlated rather
than independent, which makes connectivity of edges like
(n5, n9) and (n5, n0) as desirable. Therefore, we propose the
following augmentation strategy to obtain an augmented edge
adjacency graph L(G) = (L(V ), L(E), T (E)): The node set
is still defined as L(V ) = E, and we augment the edge
set using the undirected adjacency criterion (4). To retain
directional information, we encode the adjacency pattern of
two edges (with four possible patterns: head-to-head, head-to-
tail, tail-to-head, tail-to-tail) into a categorical vector, which
we denote as T (E) = {type(uv, rs) : (uv, rs) ∈ L(E)}.
By construction, for each edge in L(E), its reverse is also
in L(E) with possibly different edge types. We provide a
pictorial illustration in the left part of figure 2.

To derive an edge representation update rule, we fol-
low the spirit of the BiMPNN node update rule (3): let
N+

L (uv), N−
L (uv) be the out and in neighborhoods in the

ordinary line graph L(G) of G, and N+
L (uv), N−

L (uv) to be
those in L(G), respectively. For each edge (uv, rs) ∈ L(E),
we use C(uv, rs) ∈ V as the common incident node of
the edges uv and rs. The following updating rule enhances
BiMPNN protocol with duality information, which we term

BiMPNN-DE:

h(l+1)
v = MERGEnode

(
ϕ(l+1)
v , ψ(l+1)

v

)
g(l+1)
uv = MERGEedge

(
θ(l+1)
uv , γ(l+1)

uv

)
ϕ(l+1)
v = COMBINEnode

in

(
h(l)v ,

AGGnode
in

(
MESSAGEnode

in (h(l)v , h(l)u , g(l)uv , u ∈ N−(v))
))

ψ(l+1)
v = COMBINEnode

out

(
h(l)v ,

AGGnode
out

(
MESSAGEnode

out (h(l)v , h(l)r , g(l)vr , r ∈ N+(v))
))

θ(l+1)
uv = COMBINEedge

in

(
g(l)uv ,

AGGedge
in

(
MESSAGEedge

in (g(l)uv , g
(l)
pq , ĥ

(l)
pq,uv, pq ∈ N−

L (uv))
))

γ(l+1)
uv = COMBINEedge

out

(
g(l)uv ,

AGGedge
out

(
MESSAGEedge

out (g(l)uv , g
(l)
rs , ĥ

(l)
uv,rs, rs ∈ N+

L (uv))
))

ĥ(l)uv,rs = COMBINEtype
(
h
(l)
C(uv,rs), Ttype(uv,rs)

)

(6)

Where we use g(l)uv to denote the hidden representation of edge
uv at the l-th layer of GNNs derived from the BiMPNN-DE
protocol. The protocol devices an additional edge representa-
tion update component that mirrors the BiMPNN protocol over
the augmented edge adjacency graph L(G) (see the last four
equations in the display (6)). To obtain an edge representation
counterpart h̃(l)uv,rs during the aggregation process over L(G),
we use an additional COMBINEtype mechanism that combines
features of the common incident node and the information of
adjacent types, with is encoded into a learnable edge type
embedding matrix T ∈ R4×d. The BiMPNN-DE protocol (6)
offers a much larger design space than that of BiMPNN pro-
tocol. In its full generality, we may specify up to 15 different
mechanisms corresponding to different MERGE, COMBINE,
AGG and MESSAGE operations. From a practical point of
view, we may design the aforementioned operations using pa-
rameterized functions that share the same underlying structure.

D. The GRANDE architecture
In this section, we devise the previously developed BiMPNN-
DE protocol (6) to derive a concrete GNN architecture that
simultaneously outputs node and edge representations, along
with an improvement strategy that targets edge-property pre-
diction tasks. We base our design upon the acclaimed Trans-
former architecture [32], which has seen abundant adaptations
to GNNs recently [38], [8], [40]. We define the multiplicative
attention mechanism that incorporates edge information as
follows:

ATTN(hv, {hu, guv}u∈N(v)) =
∑

u∈N(v)∪{v}

αuvWNhu + βuvWEguv

αuv =
exp

(
⟨WQhv,WKhu⟩/

√
d
)

∑
u∈N(v)∪{v} exp

(
⟨WQhv,WKhu⟩/

√
d
)

βuv =
exp

(
⟨WQhv,WEguv⟩/

√
d
)

∑
u∈N(v)∪{v} exp

(
⟨WQhv,WEguv⟩/

√
d
)

(7)

We include commonly used operations in a transformer block,
namely LayerNorm (LN), skip connection and a learnable two



layer MLP (FF) as nonlinearity [32], and wraps them into a
transformer block:

TRANSFORMER(hv, {hu, guv}u∈N(v)) = LN(h̃v + FF(h̃v))

h̃v = LN(hv + ATTN(hv, {hu, guv}u∈N(v)))
(8)

After defining the basic mechanisms, we write the node and
edge update rules as follows:

h(l+1)
v = CONCAT

(
ϕ(l+1)
v , ψ(l+1)

v

)
g(l+1)
uv = CONCAT

(
θ(l+1)
uv , γ(l+1)

uv

)
ϕ(l+1)
v = TRANSFORMERnode

in

(
ΦNh

(l)
v , {ΦNh

(l)
u ,ΦEg

(l)
uv}u∈N−(v)

)
ψ(l+1)
v = TRANSFORMERnode

out

(
ΨNh

(l)
v , {ΨNh

(l)
r ,ΨEg

(l)
vr }r∈Nz=(v)

)
θ(l+1)
uv = TRANSFORMERedge

in

(
ΘNg

(l)
uv , {ΘNg

(l)
uv ,ΘE ĥ

(l)
pq,uv}pq∈N−

L (uv)

)
γ(l+1)
uv = TRANSFORMERedge

out

(
ΓNg

(l)
uv , {ΓNg

(l)
uv ,ΓE ĥ

(l)
uv,rs}rs∈N+

L (uv)

)
(9)

The updating equations (9) involve many learnable parameters,
to which we apply the following naming convention: We use
upper case greek letters Φ,Ψ,Θ,Γ to denote projection matri-
ces that takes value in R2d×d, and we use the subscript N for
node-related projection and E for edge-related projection. The
COMBINEtype operation is set to be element-wise addition.
Improvements over edge-property prediction tasks The
architecture in (9) is most helpful when the underlying task
is to predict properties of some existent edges, which serves
as the underlying task for many financial applications like
fraud detection and AML. Toward this goal, an ad-hoc solution
is to base the prediction with respect to edge (u, v) upon
the concatenation of hu, hv and guv . According to recent
practices over pairwise learning on graphs [34], [35], incorpo-
ration of interactions between N(u) and N(v), or cross node
interactions significantly improves prediction performance.
However, the cross-node attention module proposed in [34]
requires full attention between hN(u) and hN(v), yielding a
potentially large computation overhead. Here we provide a
more efficient alternative to model the cross-node interactions
called the cross-query attention module. Given a node pair
(u, v), compute

δuv = CONCAT
(

ATTNin
left(hu, {hr, grv}r∈N−(v)),

ATTNout
left(hu, {hs, gvs}s∈N+(v))

)
δvu = CONCAT

(
ATTNin

right(hv, {hr, gru}r∈N−(u)),

ATTNout
right(hv, {hs, gus}s∈N+(u))

)
(10)

The above procedure (10) performs four queries that attends
u and v to its opponent’s in and out neighbors, respectively.
Providing the existence of an edge (u, v), the mechanism
(10) could be understood as attending nodes to the a specific
subsets of their second-order neighborhoods which have close
relationship to the edges of interest. Finally we summarize the
previous developments into a framework termed multiGraph
tRANsformer with Duality Enhancement (GRANDE) , that
utilizes the following edge representation for edge-property
prediction tasks:

gGRANDE
uv = CONCAT(guv, hv, hu, δuv, δvu) (11)

E. Extension to temporal graphs
According to the formulation in section II-A, extending the
GRANDE framework to G(T ) requires utilization of the
edge-wise timestamp information {tuv, (u, v) ∈ E} to pro-
duce time-aware node and edge representations. Inspired by
recent developments of time-aware representation learning
approaches [37], [38], we propose an extended generic time
encoding mechanism that enhances the node and edge update
rule of BiMPNN-DE with temporal information. Finally, to
better exploit the structure of the temporal graph, we suggest
a pruning strategy that shrinks the number of edges of L(GT ))
by a factor up to two.
Generic time encoding The functional time encoding (FTE)
provides a principled way that modifies the self-attention
operation (7) with minimal architecture change:

TATTN(hv, {hu, guv}u∈N(v))

=
∑

u∈N(v)∪{v}

αuvWN ȟuv + βuvWE ǧuv

ȟuv = CONCAT(hu,TE(|∆tuv|))
ǧuv = CONCAT(guv,TE(|∆tuv|))

(12)

Where TE(|∆tuv|) is temporal embedding obtained via certain
FTE mechanisms. αuvs and βuvs are calculated analogously to
the rules in (7). In this paper we will follow the Bochner-type
FTE [37], [38]:

TE(s) =
√

1
d [cos(ρ1s), sin(ρ1s), . . . , cos(ρds), sin(ρds)] (13)

with learnable parameters (ρ1, . . . , ρd). According to the setup
in [38], timestamps are associated with nodes rather than
edges, hence the authors used the time difference ∆tuv = tu−
tv . The situation becomes more complicated when timestamps
are associated with edges, for which we propose the following
modification:

∆tuv = tuv − min
u∈N(v)

tuv (14)

We use FTE based on (14) and replace the ATTN component
with TATTN component of the node time difference calcula-
tion in the node update part of (9). For the edge update part,
the ordinary node time difference method applies naturally
since edge timestamps act as node timestamps in the dual
formulation.
Temporal information and pruning strategies the pro-
posed line graph augmentation strategy produces an undi-
rected L(G). While this undirected network might provide
valuable information in general, in financial risk management
scenarios where edges represent timestamped transactions,
directed adjacencies between transactions are typically of
interest: Consider a transaction et0 from Bob to Alice, it
is reasonable to assume that downstream transactions of et0
(i.e., transactions et with t > t0) will be affected by et0 ,
but its upstream transactions shall not be affected. Inspired
from this intuition, we introduce a causal pruning strategy
that applies when temporal information is available in the
underlying graph, i.e, for an edge e that goes from u to v,
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Fig. 2: An illustration of the proposed line graph augmentation
strategy: The left figure stands for the augmented edge adja-
cency graph L(G) for the digraph depicted in figure 1. We use
colored edges to represent edge types: head-to-head and tail-
to-tail, note that the remaining two kinds of edge types do not
appear in L(G). The right figure shows the effect of the causal
pruning strategy under the additional temporal constraint that
t0 < t1 < · · · < t9, with ti being the occurrence time of edge
ti for i ∈ {0, . . . , 9}

we have its time of occurrence te. The causal pruning strategy
deletes edges in L(G) with the occurrence time of the head
node being earlier than that of the tail node. When the causal
pruning strategy is applicable, we may prune up to 50% of
the edges in L(G). An illustration is provided in the right part
of figure 2. Note that the proposed strategy is closely related
to the construction of causal temporal subgraphs in temporal
graph modeling literature [38], [29].

F. Scalability and complexity
Most of the real-world financial networks like transaction
networks are sparse, i.e., most people only make transactions
to a few others given a finite time window. Consequently,
the computational complexity of any message passing neu-
ral networks could be roughly regarded as O(Ed2). Ex-
tending ordinary MPNN architectures to BiMPNN protocol
doubles the computation cost, which could be easily resolved
through parallelization in modern deep learning frameworks
like tensorflow [1]. The extra computational cost brought
by introducing the dual component (6) requires more care:
even when the original graph is sparse, its augmented edge
adjacency graph might be dense or even complete. Such cases
do happen in realistic scenarios since large hubs frequently
exist in transaction networks, which corresponds to a com-
plete subgraph in the dual network. Therefore the worst-
case computation cost of O(E2d2) is sometimes inevitable
in architectures derived from the BiMPNN-DE protocol (6).
Hence to meet the computational requirement of GNN archi-
tectures like GRANDE , performing GNN training/inference
over the whole graph is unrealistic. Instead, we resort to
a local computation alternative implemented by the AGL
system [43] which grabs the K-hop rooted subgraph of each
target node and performed batched stochastic training and
efficient parallel inference given distributed infrastructures like
MapReduce [43]. In practical scenarios, it is often reasonable
to set an upper bound Mmax on the edges of any K-hop rooted
subgraph and device proper sampling methods to meet the
requirement. The resulting computational complexity during

training is reduced to O(BM2
maxd

2), where B denotes the
batch size. Since we may control Mmax so that the whole
batch of subgraphs fits the storage requirement of high-
performance hardware like GPU, the computational costs of
running GRANDE becomes fully affordable for industry-scale
distributed training and inference.

III. RELATED WORKS

A. Neural models over directed graphs
Directional extensions of message passing GNN protocol
were mentioned in pioneer works [9], [3] without providing
empirical evaluations. Recent developments toward designing
GNNs for digraphs are mostly inspired by different types of
graph Laplacians that are defined over digraphs. For example,
[30] used the definition in [7] and [44] used the Hermitian
magnetic Laplacian to decouple the aggregation process of
graph connectivity and edge orientations.

B. GNNs for edge representation learning
The idea of utilizing node-to-edge duality was explored in
early works like LGNN [5], where the authors drew in-
sights from community detection literature, and use the non-
backtracking walk operator [17] to define the dual graph
and perform GCN-like aggregations simultaneously over both
graphs. Later developments [13], [4], [14] focused on variants
of LGNN with the alternative definition of the dual, such as
the standard LINE graph [10].

C. Transformer architectures over graphs
The renowned GAT architecture [33] could be regarded as
using the additive attention mechanism to form the attention
layer, as opposed to the multiplicative attention mechanism
adopted by the Transformer architecture [32]. Adaptations of
the original Transformer to graph context have been assessed
recently, [8] replaced the additive attention in GAT with inner
product attention and use spectral embedding as a proxy for the
positional embedding component in the original transformer
architecture. In [40], the authors proposed to use full-attention
transformers and use graph-theoretical attributes of nodes and
edges to guide the attention procedure. While the results were
shown competitive over biological benchmarks, the computa-
tional overhead is way too heavy for industrial-level graphical
applications.

IV. EXPERIMENTS

In this section, we report empirical evaluations of GRANDE
over an industrial application as well as assessments over
public datasets. We focus on the edge classification task over
temporal directed multigraphs. Finally, we present a detailed
ablation study to decompose the contributions of different
constituents of GRANDE .

A. Datasets
We use one industrial dataset and two public datasets, with
their summary statistics listed in table III in appendix A.
AML dataset This dataset is generated from transaction
records collected one of the world’s leading online payment
systems. The business goal is to identify transactions that
exhibit risky patterns as being highly suspicious of money



laundering. The underlying graph is constructed by treating
users as nodes and transactions as directed edges with arbitrary
multiplicity. We engineer both node and edge features under
a two-stage process: We first obtain raw node features via
statistical summaries of corresponding user’s behavior on the
platform during specific time periods, and raw edge features
consist of transaction properties as well as related features
of two users involved in the transaction. 2 The decision tree
feature transforms [12] is then applied to both features so that
after the transform, the input node and edge feature for all the
assessed models are sparse categorical features with dimension
6400. For both training and testing, we collect data under a
10-day period with no overlap between the training period and
the testing period. A random subset corresponding to 10% of
the testing data is held out for validation.
Bitcoin datasets We use two who-trusts-whom networks of
people who trade using Bitcoin on two different platforms,
Bitcoin OTC and Bitcoin Alpha [19], [18]. Both networks are
directed without edge multiplicities, each edge is associated
with a timestamp and a trust score ranging from −10 to
10. We consider the task of binary edge classification with
edge labels generated as whether the trust score is negative.
Using node features represented as the concatenation of one-
hot representation of in and out-degree of nodes. For both
datasets, we use the chronological split that uses 70% data for
training, 10% for validation, and 20% for testing

B. Baselines
We compare the proposed GRANDE framework with the
following types of baselines:
Undirected approaches We consider two representative
GNN architectures GCN [16] and GAT [33] that operate on
undirected graphs. Since temporal information is available in
all three datasets, we also include the TGAT architecture [38].
As all the aforementioned methods produce node-level repre-
sentations, we use the concatenation of node representations
as edge representation according to the adjacency structure.
As frameworks that directly output edge representation remain
few, we include the EHGNN architecture [14] as a strong
baseline. To make the undirected architectures compatible with
directed (multi)graphs, we add reverse edges with duplicated
edge features if there exist no edge multiplicities in the
digraph. Otherwise, we keep only one edge between each
pair of nodes, with the corresponding edge feature generated
via aggregating the original edge features (according to the
”multigraph to graph” hierarchy) using the DeepSet method
[42], and add reverse edges thereafter.
DiGraph-oriented approaches We consider two digraph
GNN architectures that utilizes different notions of directed
graph Laplacians, DGCN [24] and MagNet [44].
The aforementioned baselines exclude some of the recently
proposed state-of-the-art GNN models like Graphormer [40]
for undirected graphs or directed approaches like DiGCN

2Per organizational regulations, the detailed feature engineering logic is not
fully described. We will consider (partially) releasing the AML dataset after
passing relevant security checks of the company, as well as the source code.

[30] due to scalability issues, i.e., they require either full
graph attention or solving eigen programs over the full graph
Laplacian, which are computationally infeasible for industry-
scale graphs.

C. Experimental setup
Across all the datasets and models, we use a two-layer
architecture with hidden dimension d = 128 without further
tuning. For models with generic time encodings, we fix the
dimension of time encoding to be 128. For transformer related
architectures, we follow the practice in [32] and use a two-
layer MLP with ReLU activation with hidden dimension
512. As all the relevant tasks are binary classifications, we
adopt the binary cross entropy loss as the training objective,
with ℓ2 regularization under a coefficient 0.0001 uniformly
across all experiments. The graph data are constructed via the
GraphFlat component of the AGL system [43] that transforms
the raw graph data into batches of subgraphs with appropriate
sampling. 3 We use Adam optimizer with a learning rate of
0.0001 across all tasks and models. For the bitcoin datasets,
we train each model for 10 epochs using a batch size of 128
and select the best-performed one according to the roc-auc
score on the validation data under periodic evaluations every
100 steps. For the AML dataset, we train the model for 2
epochs with a batch size of 256 as the size of the dataset is
sufficiently large. We adopt similar model selection criterion
as those of Bitcoin datasets, with periodic evalutions every
500 steps.
Metrics Since the primary focus of this paper is applications
to the FRM scenario, we choose three representative metrics,
namely roc-auc score (AUC), Kolmogorov-Smirnov statistic
(KS) and F1 score (F1).

D. Performance
We present evaluation results in table I. Apart from the pro-
posed GRANDE architecture, we report a reduced version of
GRANDE via discarding all operations on the augmented edge
adjacency graph, as well as the cross-query attention module
(10). The resulting model could be considered as implementing
a time-aware variant of graph transformer under the BiMPNN
protocol. We summarize our experimental findings as follows:

• For the Bitcoin datasets which could be considered as under
the weak feature regime, the GRANDE architecture obtains
substantial performance improvement: On the Bitcoin-OTC
dataset, the relative improvement over the best baselines are
10.1%, 30.7% and 22.6% with respect to AUC, KS, and
F1. On the Bitcoin-Alpha dataset, the relative improvement
is more significant with 19.2%, 67.3%, and 35.4% respec-
tively. We attribute the improvements to both the directional
information and the duality information that GRANDE
utilizes. The improvements of the directional information

3The AGL framework is particularly useful when dealing with industry-
scale graphs that are barely possible to process as a whole. However, it
may lose some information in the sampling stage of the preprocessing phase.
To fully mimic the industrial setup, we preprocess all three datasets using
AGL, therefore the results of Bitcoin datasets are not directly comparable to
previously published results.



TABLE I: Experimental results over two public Bitcoin datasets and the AML dataset, with best performances in bold

Bitcoin-OTC Bitcoin-Alpha AML
AUC KS F1 AUC KS F1 AUC KS F1

GCN [16] 0.742 0.376 0.432 0.626 0.198 0.282 0.958 0.793 0.704
GAT [33] 0.736 0.381 0.393 0.626 0.178 0.269 0.962 0.802 0.718
TGAT [38] 0.744 0.401 0.422 0.656 0.248 0.294 0.963 0.804 0.720
EHGNN [14] 0.719 0.356 0.420 0.626 0.228 0.297 0.961 0.804 0.718
DGCN [24] 0.634 0.243 0.354 0.633 0.228 0.282 0.962 0.806 0.720
MagNet [44] 0.753 0.388 0.434 0.645 0.217 0.293 0.954 0.780 0.688

GRANDE (reduced) 0.789 0.459 0.460 0.669 0.256 0.294 0.965 0.810 0.726
GRANDE 0.829 0.524 0.532 0.769 0.415 0.398 0.966 0.813 0.734

TABLE II: Performance summary of ablation studies, with best performance in bold

Bitcoin-OTC Bitcoin-Alpha AML
AUC KS F1 AUC KS F1 AUC KS F1

GRANDE 0.829 0.524 0.532 0.769 0.415 0.398 0.966 0.813 0.734

- reduced 0.789 0.459 0.460 0.669 0.256 0.294 0.965 0.810 0.726
- w/o causal pruning 0.801 0.464 0.485 0.726 0.325 0.339 0.966 0.813 0.732
- w/o time encoding 0.834 0.525 0.531 0.691 0.265 0.324 0.966 0.813 0.731
- w/o cross-query attention 0.828 0.528 0.504 0.766 0.395 0.372 0.966 0.813 0.730
- w line graph 0.762 0.405 0.415 0.655 0.229 0.285 0.965 0.812 0.729
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Fig. 3: Precision-recall (PR) curve under the AML dataset.
We show recall values corresponding to high precision ranges
(from 0.7 to 1.0 equally spaced with 0.025)

could be inferred from the results of the reduced GRANDE
variant, which exhibits solid improvements over all the
baselines. The incorporation of edge-to-node duality and
cross-query attention systematically encodes more structural
information, therefore yielding further improvements.

• For the AML dataset which could be regarded as under
the strong feature regime, the performance improvement is
significant with respect to KS and F1 metrics while being
less significant with respect to AUC. Such improvements are
still valuable in FRM applications since a higher F1 score
potentially suggests better patterns of the precision-recall
(PR) curve, which we plot in figure 3. The PR curve shows
the dominant performance of GRANDE against baselines:
under various precision levels, the recall of GRANDE
surpasses the best baseline (TGAT) by as many as 5.29%
in absolute value and 13.4% in relative.

E. Ablation study
We evaluate the following variants of GRANDE over all three
datasets to investigate contributions of different constituents:

Reduced version this is the one reported in table I
Without causal pruning in this model variant we retain the
full edge adjacency graph without pruning. Which is compu-
tationally heavier than the GRANDE architecture
Without time encoding in this model variant we discard the
temporal component of GRANDE and use the update rule (9)
Without cross-query attention in this model variant we
discard the cross-query attention module (10), and use
CONCAT(guv, hv, hu) as the output embedding for edge
(u, v).
With line graph in this model variant, we use the ordinary
directed line graph instead of the proposed augmented edge
adjacency graph. i.e., we replace N+

L (uv) and N−
L (uv) in (9)

with N+
L (uv) and N−

L (uv), respectively.

Results we report results in table II using the same training
configuration and evaluation metrics as in section IV-C. There
are a couple of notable observations: Firstly, the causal pruning
procedure saves computation as well as improves performance,
providing a solid relational inductive bias in temporal graph
modeling. Secondly, the incorporation of time encoding and
cross-query attention are in general helpful. Finally, using the
ordinary line graph performs on par with the reduced model,
showing the insufficiency of additional information provided
by line digraphs, thereby verifying the necessity of using the
augmented edge adjacency graph.

V. DISCUSSION

Interpretability The dominating performance of neural ap-
proaches comes at the cost of lacking of model interpretablity,
which is crucial to application scenarios like AML, where out-
puts of decision making systems tie strongly with regulatory



strictures [20]. The adoption of neural approaches enjoys better
performance than potentially interpretable methods like linear
models as well as losing interpretability. Model explanation
methods targeting graph neural models are especially challeng-
ing [22] due to the combinatorial nature of the interpretation
problem. Off-the-shelf GNN explaining tools (refer to [22] and
references therein) are not yet applicable to neural models
over directed graphs, which is a promising and challenging
direction for future explorations.
Multi-task adaptations The representation quality in both
node and edge embeddings gives the GRANDE architec-
ture the possibility to exploit side-information via multi-task
learning paradigms [26]. For example it is quite common in
FRM scenarios to obtain both a set of user riskiness labels
alongside transaction labels. We have taken a trivial adaptation
of GRANDE into multi-task setups using extra node labels
via adding a node-level classification loss to the training
objective and has shown solid improvement (we report results
in appendix A). Applying more elegant multi-task learning
techniques [26] to further exploit the potential of GRANDE
is an interesting direction for future studies.

VI. CONCLUSION

In this paper we propose a graph representation learning
framework for directed multigraphs that prevail in FRM ap-
plications. The proposed framework generalizes the acclaimed
message passing graph neural network protocol to incorporate
directional information, as well as utilizing the edge-to-node
dual relationship to further enhance the relational inductive
bias with regard to edge property prediction tasks. A concrete
architecture named GRANDE is derived according to the
proposed protocol with the transformer architecture being its
aggregation mechanism, as well as a cross-query attention
module targeting edge-type tasks. The GRANDE model is
generalizable to temporal dynamic graphs via proper generic
time encodings along with a pruning strategy. Experimental
results over both public and industrial datasets verify the
efficacy of the design of GRANDE .
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APPENDIX

We list the summary statistics of used datasets in table III

TABLE III: Summary statistics of the evaluation datasets

Bitcoin-otc Bitcoin-alpha AML

# Nodes 5881 3783 10268164
# Edges 35592 24186 13335278
# Positive edges 3563 1536 1338425
# Negative edges 32029 22650 11996853
# Node features 12012 15210 6400
# Edge features − − 6400

We conduct an additional experiment using the AML dataset
augmenting with a set of node labels: the labels are obtained
via an expert-maintained malicious user list that takes the form
of a binary vector indicating whether the user is malicious or
not. The labels are mapped separately to both the buyer (the

party that sends money) and seller (the party that receives
money) of the transactions, so that for each transaction we may
have up to three labels. We follow exactly the same training
configuration and hyperparameter settings in section IV-C.
Comparisons are made under the recall metric under different
precisions, which we report in table IV. The results imply
that the incorporation of side-information yields consistent
improvements, especially in recalls at high precision (with a
relative improvement of over 10% in r@p95), which is wildly
considered to be a key factor in the assessment of models in
FRM scenarios.

TABLE IV: Performance comparison between GRANDE and
GRANDE with side-information (node-level labels) over the
AML dataset. metric r@pp means recall value at precision p,
with best performance in bold

r@p95 r@p90 r@p85 r@p80

GRANDE 0.160 0.368 0.517 0.624
GRANDE (multi-task) 0.186 0.382 0.523 0.629


