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ABSTRACT
Data augmentation has been widely studied as it can be used to
improve the generalizability of graph representation learning mod-
els. However, existing works focus only on the data augmentation
on homogeneous graphs. Data augmentation for heterogeneous
graphs remains under-explored. Considering that heterogeneous
graphs contain different types of nodes and links, ignoring the type
information and directly applying the data augmentation meth-
ods of homogeneous graphs to heterogeneous graphs will lead to
suboptimal results. In this paper, we propose a novel Multi-Aspect
Heterogeneous Graph Augmentation framework named MAHGA.
Specifically, MAHGA consists of two core augmentation strategies:
structure-level augmentation and metapath-level augmentation.
Structure-level augmentation pays attention to network schema
aspect and designs a relation-aware conditional variational auto-
encoder that can generate synthetic features of neighbors to aug-
ment the nodes and the node types with scarce links. Metapath-level
augmentation concentrates on metapath aspect, which constructs
metapath reachable graphs for different metapaths and estimates
the graphons of them. By sampling and mixing up based on the
graphons, MAHGA yields intra-metapath and inter-metapath aug-
mentation. Finally, we conduct extensive experiments on multiple
benchmarks to validate the effectiveness of MAHGA. Experimental
results demonstrate that our method improves the performances
across a set of heterogeneous graph learning models and datasets.
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1 INTRODUCTION
Data augmentation as an effective strategy to improve the general-
ization capability and performance of model has got widespread
adoption in various fields such as computer vision (CV) [6, 11, 33]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’23, April 30– May 04, 2023, Austin, Texas, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

(a) (b)

Figure 1: The distribution of node degree on yelp dataset. (a)
depicts the degree distribution of different business nodes.
(b) depicts the average degree distribution of different types
of nodes.

and natural language processing (NLP) [3, 14, 15]. The core idea
of data augmentation is to design various augmentation strategies
to generate new plausible data based on existing data without ad-
ditional ground-truth labels so as to enhance the quantity and/or
the quality of existing data. Since graph learning usually faces with
many dilemmas such as feature data incompleteness, structural
data sparsity brought by power-law distributions, costly data an-
notations and so on, data augmentation naturally provides a good
solution to help graph learning models deal with above problems.
However, due to the irregular and non-Euclidean nature of graph
data, the structured data augmentation operations used frequently
in CV and NLP cannot be applied to graph learning models. More-
over, different information modalities and graph properties yield a
broader design space for graph data augmentation. Therefore, more
and more researchers are starting to pay their attention to the data
augmentation for graph data.

Recently, there has been a growing number of works on graph
data augmentation [26, 29, 31, 34]. Despite their successes, all the
current augmentation methods are developed for homogeneous
graph and there has never been a work exploring the data augmen-
tation on heterogeneous graphs. Heterogeneous graphs which come
with multi-types of nodes and links are ubiquitous in real-world
scenarios, ranging from bibliographic networks, social networks to
recommendation systems. They usually contain more comprehen-
sive information and richer semantics than homogeneous graphs.
Directly adapting homogeneous graph augmentation methods to
heterogeneous graph results in the loss of type information and
semantics. Moreover, it even introduces unexpected noise which
hurts the performance of graph learning models. Consequently, it
is important to develop a special data augmentation framework for
heterogeneous graphs.

In order to effectively augment heterogeneous graphs, we first
analyse the common challenges faced by heterogeneous graph
learning models. On the one hand, besides the data skew caused
by the power-law distribution of the graph, there are extremely
imbalanced regarding different node types because the degree dis-
tribution of different types of nodes varies dramatically. To verify
above phenomena, we depict the degree distribution of different
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nodes of the same type and the average degree distribution of dif-
ferent types of nodes in Figure 1. From the figure, it is clear that
there are significant differences in the degrees of different types
of nodes. Even for nodes of the same type, the degree distribution
is not uniform. Therefore, we argue that the link imbalances be-
tween different nodes and between different types of nodes restrict
the performance of heterogeneous graph learning models. Espe-
cially, the nodes and the node types with a limited number of links
cannot provide sufficient information and become an information
bottleneck.

On the other hand, metapath, which describes a composite re-
lation between the node types involved, has been widely used to
describe the diverse semantics of a heterogeneous graph. Taking a
bibliographic graph as an example, a metapath Paper-Author-Paper
(PAP) represents that two papers are written by the same author,
while Paper-Subject-Paper (PSP) represents that two papers belong
to the same subject. Even though metapath is successful at improv-
ing performance by giving a clear guide to heterogeneous graph
learning models, existing models get metapath-based node relations
from observed heterogeneous graphs. However, the raw observed
graphs are usually extracted from complex real-world interaction
systems by some predefined rules. They are often noisy or even
incomplete due to the inevitably error-prone data measurement
or collection. Therefore, obtaining metapath based node relations
directly from the observed graph leads to inaccurate results and
affects the performance of heterogeneous graph learning models.
Furthermore, existing models explicitly offer the sequences of node
types to define the metapaths which needs sufficient domain knowl-
edge and is difficult to extend. In summary, defining a good set of
metapaths and obtaining accurate metapath based node relations
are challenging for heterogeneous graph learning models.

In order to tackle the challenges addressed above, we develop
a novel Multi-Aspect Heterogeneous Graph Augmentation frame-
work (MAHGA) that contains two aspects of augmentation strategy:
structure-level augmentation and metapath-level augmentation.
Structure-level augmentation focuses on the local structures of
nodes and aims to augment the neighbor information. Specifically,
it designs a relation-aware conditional variational auto-encoder
to learn the conditional distribution of neighbor nodes’ features
given the center node’s features and the type of neighbor nodes.
By sampling from the learned distribution, we can generate syn-
thetic neighborhood features to augment the nodes and the node
types with scarce links. Metapath-level augmentation follows with
interest metapath information and employs graphon as a genera-
tor to conduct intra-metapath and inter-metapath augmentation.
Graphon, a function that determines the matrix of edge probabili-
ties, reflects the underlying topology structure of graph so that it
is well suited to deal with the challenges in metapath aspect. We
first construct metapath reachable graphs for pre-defined metap-
aths and estimate the graphons of these graphs. In intra-metapath
augmentation, we repeatedly sample from the graphon to generate
several new metapath reachable graphs for each metapath. By train-
ing heterogeneous graph learning models based on generated and
original metapath reachable graphs, MAHGA improves the gener-
alization of heterogeneous graph learning model and alleviates the
inaccuracy of metapath caused by the mistakes and incompleteness
of observed graph. In inter-metapath augmentation, we draw on

the idea of mixup augmentation method which has been widely
used in CV field [27, 35, 36]. By mixing the graphons of metapath
reachable graphs of different pre-defined metapaths, we can gener-
ate many new graphons which imply the new metapaths. What’s
more, the new metapaths determined by augmented graphons are
implicit, meaning that we do not require extra domain knowledge
to explicitly define the node type sequences of them.

In summary, the overall contributions of this paper can be sum-
marized as follow:
• We analyse the common challenges faced by heterogeneous
graph learning models and use them as the guide to design effec-
tive data augmentation strategies for heterogeneous graph.

• We propose MAHGA, which is the first work to explore data
augmentation on heterogeneous graphs. MAHGA constructs a
relation-aware conditional variational auto-encoder and utilizes
graphons of metapath reachable graphs to achieve structure-level
and metapath-level augmentation.

• We conduct extensive experiments on three different datasets
to show the effectiveness of our augmentation framework for
improving mainstream heterogeneous graph learning models.
The experimental results demonstrate that the state-of-the-art
homogeneous graph augmentation methods cannot adapt to het-
erogeneous graph well. In contrast, our augmentation framework
yields significant gains for heterogeneous graph learning models.

2 RELATEDWORK
In this paper, we review some representative works on graph data
augmentation and heterogeneous graph representation learning.
Considering that there is nowork to research the data augmentation
on heterogeneous graphs, we only introduce the relevant literature
in homogeneous graph data augmentation.

2.1 Graph Data Augmentation
Graph data augmentation aims to create new graph data via slightly
modified copies of the original graph, or generate synthetic data
based on the original graph to improve the generalization ability of
graph learning models. According to the different augmentation ob-
jects, the existing graph augmentation methods can be divided into
three categories: node-centralized augmentation, edge-centralized
augmentation and graph-centralized augmentation.

Node-centralized augmentation methods take nodes as basic
objects to design augmentation operations. NodeAug[30] designs
three augmentation strategies including attribute replacing, edge
removing and edge adding for nodes and regularizes the model
predictions of nodes to be invariant with respect to changes in-
duced by augmentation. NASA[2] defines augmentation operation
as randomly replacing the immediate neighbors of nodes with their
remote neighbors, and designs consistency and diversity metrics
to improve the correctness and generalization of augmentation.
LA[16] learns the distribution of the node representations of the
neighbors conditioned on the central node’s representation and
generate new neighbor features to augment the central nodes.

Edge-centralized augmentation methods mainly conduct aug-
mentation operations on edges. DropEdge[21] randomly removes
a certain number of edges from the original graph at each training
epoch. GAUG[39] designs a neural edge predictor to strategically
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choose ideal edges to add or remove. CFLP[38] employs causal
model to create counterfactual edges to improve the model perfor-
mance.

Graph-centralized augmentationmethods aremore coarse-grained
than above two augmentation methods as they directly generate
synthetic graphs. MH-Aug[20] defines an explicit target distribu-
tion and draws augmented graphs from the distribution so that it
enables flexible control of the strength and diversity of augmenta-
tion. Suresh et al.[23] employ information bottleneck principle to
control the augmentation process and improve the qualities of aug-
mented graphs. To avoid the generating of unbeneficial augmented
graphs, MEGA[9] designs a learnable graph augmenter and trains
a graph learning model based on a meta-learning paradigm.

Although above augmentation methods promote the perfor-
mance of graph learning model, they are only designed for ho-
mogeneous graph and ignore the type information and the rich
semantics of heterogeneous graph, which are important to hetero-
geneous graph learning models.

2.2 Heterogeneous Graph Representation
Learning

Heterogeneous graph representation learning aims to model rich se-
mantics of heterogeneous graph to learn low-dimensional node em-
bedding, which can be used in various downstream tasks. CompGCN[24]
leverages a variety of entity-relation composition operations from
knowledge graph embedding techniques to embed both nodes and
relations in a heterogeneous graph. Inspired by the architecture
design of Transformer[25], HGT[12] proposes a heterogeneous mu-
tual attention mechanism and uses it to achieve heterogeneous
message passing and aggregation. Simple-HGN[18] combines three
well-known techniques: learnable edge-type embedding, residual
connections and normalization to design a heterogeneous neighbor-
hood aggregation mechanism to model the complex neighborhood
structure of nodes.

Except for modeling the local structure, there are many works
that adopt metapath which defines high-order composite relation
between nodes to capture meaningful semantics. HAN[28] designs
node-level attention and semantic-level attention to model the
importance of different metapath based neighbors and different
metapaths respectively. Node embedding can be obtained by hi-
erarchically aggregating features from metapath based neighbors.
MAGNN[8] considers the semantics of intermediate nodes of meta-
path and designs intra-metapath and inter-metapath aggregation
mechanism to acquire node embedding. HPN[13] designs the se-
mantic propagationmechanism and the semantic fusionmechanism
to alleviate semantic confusion and builds a more powerful hetero-
geneous graph learning architecture to learn node embedding.

3 PRELIMINARY
In this section, we first give formal definitions of some important
terminologies related to heterogeneous graph. Then, we present
the heterogeneous graph augmentation problem.

Definition 1. Heterogeneous Graph: A heterogeneous graph is
defined as a graph G = (V, E) associated with a node type mapping
function 𝜙 : V → A and an edge type mapping function𝜓 : E → R.

A and R denote the predefined sets of node types and edge types
respectively, with |A| + |R| > 2.

Definition 2. Metapath: A metapath Φ is defined as a path in

the form of 𝐴1
𝑅1−→ 𝐴2

𝑅2−→ · · · 𝑅𝑙−1−→ 𝐴𝑙 (abbreviated as 𝐴1𝐴2 · · ·𝐴𝑙 ),
which describes a composite relation 𝑅 = 𝑅1 ◦𝑅2 ◦ · · · ◦𝑅𝑙−1 between
objects 𝐴1 and 𝐴𝑙 , where ◦ denotes the composition operation on
relations.

Definition 3. Metapath based Neighbors: Given a node 𝑖 and
a metapath Φ in a heterogeneous graph G, the metapath Φ based
neighbors NΦ

𝑖
of node 𝑖 are defined as the set of nodes which connect

with node 𝑖 via metapath Φ.

Definition 4. Metapath Reachable Graph: Given a metapath
Φ in a heterogeneous graph G, the metapath reachable graph GΦ is
constructed by all the metapath Φ based neighbor pairs in graph G.
Note that GΦ is homogeneous if Φ is symmetric.

Definition 5. Heterogeneous Graph Augmentation: Given a
heterogeneous graph G = (V, E), heterogeneous graph augmentation
aims to find a mapping function 𝑓𝜃 : G → G such that the augmented
graph G = (V, E) can be used to improve the generalization ability
of a heterogeneous graph learning model.

4 MULTI-ASPECT HETEROGENEOUS GRAPH
AUGMENTATION

In this section, we introduce the MAHGA whose overall structure
is shown in Figure 2. MAHGA contains structure-level augmenta-
tion and metapath-level augmentation, which are designed for the
augmentation of complex structure and meaningful metapath re-
spectively. In structure-level augmentation, we construct a relation-
aware conditional variational auto-encoder (RCVAE) which con-
siders the type information in graph data augmentation. Given the
central node and the neighbor type planned to augment, RCVAE
can generate synthetic features of neighbors to augment the local
structure of the central node. In metapath-level augmentation, we
first construct a metapath reachable graph for each pre-defined
metapath. Then, we estimate the graphons of these metapath reach-
able graphs and conduct intra-metapath and inter-metapath aug-
mentation. For intra-metapath augmentation, we use graphon to
define the Bernoulli distribution and resample several synthetic
metapath reachable graphs to augment the semantic information
of current metapath. For inter-metapath augmentation, we mixup
the graphons of metapath reachable graphs of different metapaths
to generate new graphons which can be regarded as new metap-
aths. Then, we generate synthetic metapath reachable graphs by
sampling from above new graphons to augment the semantic infor-
mation between metapaths.

4.1 Structure-level Augmentation
Structure-level augmentation aims to provide more data to augment
the nodes and the node types with scarce links so as to alleviate the
sparsity and imbalance issues of heterogeneous graph data. The
intuitive solution is to strategically select some nodes as the new
neighbors of the central node to augment the local structure of the
central node. However, this method has two main drawbacks. 1)
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Figure 2: The overall framework of the proposed MAHGA

The good node selection strategy is difficult to define. Once the
inappropriate nodes are selected as the new neighbors, the addi-
tional unexpected noise will be introduced to the heterogeneous
graph learning model and affect the model performance. 2) This
method can only select nodes that already exist in the heteroge-
neous graph as new neighbors to conduct augmentation. However,
for the central node, it is possible that there is no appropriate node
that can be selected in the heterogeneous graph. Therefore, in order
to overcome above limitations, we design a generative model to
learn the features’ distribution of neighbors and directly sample
new neighbors from the distribution rather than select existing
nodes as new neighbors. Next, we will elaborate the generative
model and the data augmentation process.

4.1.1 Relation-aware Conditional Variational Auto-encoder. In a
heterogeneous graph, the features of different types of nodes are
in different feature spaces. Therefore, to accurately model the fea-
tures’ distribution of neighbors, it is necessary to consider both the
features of the central node and the types of neighbors. Based on
the above motivation, we draw on the idea of the conditional varia-
tional autoencoder (CVAE) [16, 22] to construct the relation-aware
conditional variational auto-encoder (RCVAE) as the generative
model. Formally, given the features X𝑣 of the central node 𝑣 and
the relation type embedding r𝑢𝑣 , we have

𝑙𝑜𝑔𝑝𝜃 (X𝑢 |X𝑣, r𝑢𝑣) =
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔
𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑𝑧

+𝐾𝐿(𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) | |𝑝𝜃 (z|X𝑢 ,X𝑣, r𝑢𝑣))

≥
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔
𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑𝑧

(1)
where X𝑢 is the features of neighbor of the central node 𝑣 . 𝜙 and 𝜃
are the variational parameters and generative parameters respec-
tively. z is the latent variable which is generated from the prior
distribution 𝑝𝜃 (z|X𝑣, r𝑢𝑣). As relation type implies the types of two

ends, we employ learnable relation type embedding as the condi-
tion in this paper. Then, the evidence lower bound (ELBO) can be
written as:
𝐿(X𝑢 ,X𝑣, r𝑢𝑣 ;𝜃, 𝜙) = −𝐾𝐿(𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) | |𝑝𝜃 (z|X𝑣, r𝑢𝑣))

+ 1
𝑁 𝑣

𝑁 𝑣∑︁
𝑛=1

𝑙𝑜𝑔𝑝𝜃 (X𝑢 |z𝑛,X𝑣, r𝑢𝑣)
(2)

where 𝑁 𝑣 is the number of neighbors of the central node 𝑣 . z𝑛 ∼
N(𝝁𝑢𝑣,𝝈2

𝑢𝑣) is generated by reparameterization trick. The mean
𝝁𝑢𝑣 and variance 𝝈2

𝑢𝑣 of the distribution are generated by the en-
coder 𝑔𝑒𝑛𝑐

𝜙
(X𝑢 ,X𝑣, r𝑢𝑣) of RCVAE. Finally, we sample a latent vari-

able z ∼ N(0, I) as input for the decoder 𝑔𝑑𝑒𝑐
𝜃

(z,X𝑣, r𝑢𝑣) of RCVAE
to obtain the synthetic neighbor features X𝑣 .

4.1.2 Pre-training and Augmentation. In general, for a specific
downstream task, We can use Maximum Likelihood Estimation
(MLE) to estimate the parameter Υ of a heterogeneous graph learn-
ing model. It optimizes the following likelihood function:

𝑚𝑎𝑥
∏
𝑖

𝑃Υ (Y𝑖 |G) (3)

where Y is the class labels of downstream task. 𝑖 represents the 𝑖-th
data point in the training dataset. As our augmentation framework
uses the original heterogeneous graph data to train RCVAE and em-
ploys RCVAE to generate synthetic neighbor features X to conduct
augmentation, The likelihood function in Eq.(3) can be rewritten
as follows:

𝑚𝑎𝑥
∏
𝑖

∫
X
𝑃Υ (Y𝑖 ,X|G) (4)

According to the Bayes Rule, we can further decompose 𝑃Υ in
Eq.(4) as a product of two posterior probabilities:

𝑃Υ,𝜙 (Y𝑖 ,X|G) = 𝑃Υ (Y𝑖 |X,G)𝑄Ψ (X|G) (5)

where 𝑃Υ (Y𝑖 |X,G) and𝑄Ψ (X|G) are the probabilistic distributions
approximated by heterogeneous graph learning model and RCVAE
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respectively. By the decomposition, we decouple the training pro-
cesses of RCVAE and heterogeneous graph learning model. There-
fore, we can pre-train RCVAE first and then apply it to conduct
augmentation. Specifically, in pre-training stage, we extract neigh-
boring triple (X𝑢 ,X𝑣, r𝑢𝑣) from the original heterogeneous graph
to train RCVAE by maximizing the ELBO (Eq. (2)). In augmentation
stage, we employ RCVAE to generate the synthetic neighbor fea-
tures and combine them with the original features of the central
node as the augmented features of the central node. Finally, we
use the augmented features to train various heterogeneous graph
learning models so as to improve the performances of these models.

4.2 Metapath-level Augmentation
Metapath-level augmentation aims to alleviate the incompleteness
and mistake issues in the metapath based sampling (intra-metapath
augmentation), while generating new synthetic metapath without
extra domain knowledge (inter-metapath augmentation). However,
metapath is more complex than the adjacency relation as different
metapaths contain different node types and the length of them
varies. It is difficult to design a strategy to directly augment meta-
path. Consequently, we use metapath based neighbors to trans-
form metapaths into metapath reachable graphs and estimate the
graphons of these graphs. Then, we design augmentation strategies
operated on graphon to indirectly augment metapath as graphon
can maintain the semantics of metapath by modeling the latent
structure of metapath reachable graph. Next, we will elaborate more
details about metapath-level augmentation.

4.2.1 Graphon Estimation. Graphon is a nonparametric graphmodel
which characterizes the observed graph and reflects its latent graph
structure. Mathematically, a graphon is a two-dimensional sym-
metric Lebesgue measurable function, denoted as W : 𝛀2 ↦→ [0, 1],
where 𝛀 is a measure space, e.g.,𝛀 = [0, 1]. As graphon does
not have a closed-form expression, how to robustly learn graphon
from observed graph becomes a thorny problem. Existing methods
mainly depend on the weak regularity lemma of graphon[7] to
solve the aforementioned problem, they learn a two-dimensional
step function to approximate graphon. The step function W𝑃 :
[0, 1]2 ↦→ [0, 1] is defined asW𝑃 (𝑥,𝑦) = ∑𝐾

𝑘,𝑘′ 𝑤𝑘,𝑘′1𝑃𝑘×𝑃𝑘′ (𝑥,𝑦),
where 𝑃 = (𝑃1, ..., 𝑃𝑘 ) partitions the interval [0, 1] into 𝐾 adja-
cent intervals with a length of 1/𝐾 . Each 𝑤𝑘,𝑘′ ∈ [0, 1] and the
indicator function 1𝑃𝑘×𝑃𝑘′ is 1 if (𝑥,𝑦) ∈ 𝑃𝑘 × 𝑃𝑘′ , otherwise
it is 0. There are many step function learning methods, e.g., the
sorting-and-smoothing method (SAS)[4], the stochastic block ap-
proximation (SBA)[1], the universal singular value thresholding
algorithm (USVT)[5] and so on. In this paper, we employ structured
Gromov-Wasserstein barycenters method (SGWB)[32] because it is
a computationally-efficient algorithm with solid theoretical guar-
antee.

More specifically, we first define the squared 2-order Gromov-
Wasserstein distance as follows:

𝑑2𝑔𝑤,2 (W1,W2) =𝑚𝑖𝑛T∈Π (𝝁1,𝝁2) ⟨D − 2W1TW⊤
2 ,T⟩ (6)

whereW1 = [𝑤1,𝑖 𝑗 ] ∈ [0, 1]𝐼×𝐼 andW2 = [𝑤2,𝑖′ 𝑗 ′] ∈ [0, 1] 𝐽 ×𝐽 are
the step functions of two graphs. Vectors 𝝁1 and 𝝁2 represent the
marginal probability measures in partitions. T = [𝑇𝑖𝑖′] ∈ R𝐼×𝐽 is
a doubly-stochastic matrix in the set Π(𝝁1, 𝝁2) = {T ≥ 0|T𝝁2 =

𝝁1, T⊤𝝁1 = 𝝁2}, whose element𝑇𝑖𝑖′ =
∫
𝑃𝑖×𝑄𝑖 ′ 𝑑𝜋 (𝑥, 𝑥

′). The matrix
T defines a transport or coupling between 𝝁1 and 𝝁2. ⟨·, ·⟩ is the in-
ner product of twomatrices.D = (W1⊙W1)𝝁11⊤𝐽 +1𝐼 𝝁

⊤
2 (W2⊙W2).

1𝐼 and 1𝐽 are the 𝐼 -dimensional and 𝐽 -dimensional all-one vectors.
⊙ represents the Hadamard product. Then, we learn the optimal
step function by minimizing the Gromov-Wasserstein distance be-
tween the observed graph and step function of the target graphon:

𝑚𝑖𝑛W∈[0,1]𝐾×𝐾
1
𝑀

𝑀∑︁
𝑚=1

𝑑2𝑔𝑤,2 (A𝑚,W) (7)

where𝑀 is the number of observed graphs and A𝑚 is the adjacency
matrix of𝑚-th observed graph. Given the transports {T𝑚}𝑀

𝑚=1, the
above problem has a closed-form solution as follows:

𝝁𝑊 =
1
𝑀

𝑀∑︁
𝑚=1

𝑖𝑛𝑡𝑒𝑟𝑝1𝑑𝐾 (𝑠𝑜𝑟𝑡 (𝝁𝑚)) (8)

W =
1

𝝁𝑊 𝝁⊤
𝑊

𝑀∑︁
𝑚=1

T⊤𝑚A𝑚T𝑚 (9)

where 𝝁𝑚 = 1
| |A𝑚1𝑁𝑚 | |1A𝑚1𝑁𝑚 . 𝑁𝑚 is the node number of𝑚-th

graph. 𝑠𝑜𝑟𝑡 (·) sorts the elements of the input vector in descending
order and 𝑖𝑛𝑡𝑒𝑟𝑝1𝑑𝑘 (·) samples K values from the input vector via
linear interpolation. After obtaining graphonW, we can conduct
the intra-metapath and inter-metapath augmentation.

4.2.2 Intra-metapath Augmentation. Intra-metapath augmentation
uses estimated graphon to augment a single metapath. Specifically,
for each metapath, it directly samples new synthetic metapath
reachable graphs from graphon. All the generated synthetic graphs
reflect the semantic information of current metapath. By training
heterogeneous graph learningmodels on the synthetic graphs, intra-
metapath augmentation can effectively improve the generalization
ability of models and alleviate the influences of data incomplete-
ness and mistake. Formally, for metapath 𝜙 , the sampling process
of synthetic metapath reachable graph G𝜙 can be formulated as
follow:

𝑣1, 𝑣2, ..., 𝑣𝑁
𝑖𝑖𝑑∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1)

G𝜙
𝑖,𝑗

𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (W𝜙 (𝑣𝑖 , 𝑣 𝑗 )) ∀𝑖, 𝑗 ∈ [1, 𝑁 ]
(10)

where 𝑁 is the node number and G𝜙 is the augmented metapath
reachable graph.

4.2.3 Inter-metapath Augmentation. The core idea of inter-metapath
augmentation is to create new synthetic metapaths based on pre-
defined metapaths. As graphon models the metapath reachable
graph, it can represent the corresponding metapath. Therefore,
we directly generate the graphons of new synthetic metapaths to
avoid explicitly defining the node types sequence. Concretely, we
employ mixup technology to interpolate the graphons of metap-
ath reachable graphs of pre-defined metapaths to generate new
graphons. Each augmented graphon represents an implicit syn-
thetic metapath. Then, we sample metapath reachable graphs from
the augmented graphons to train heterogeneous graph learning
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Table 1: Statistics of datasets.

Datasets Nodes Edges Edge Types Features Target Labels

IMDB 11616 17106 2 3066 Movie 3
ACM 11246 17426 2 1902 Paper 3
Yelp 3913 36066 3 82 Business 3

models. The augmentation process can be denoted as follow:

G𝜙𝑖 −→ W𝜙𝑖 ,G𝜙 𝑗 −→ W𝜙 𝑗

W∗ = 𝜆W𝜙𝑖 + (1 − 𝜆)W𝜙 𝑗

G∗ 𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (W∗)

(11)

where 𝜆 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) is the trade-off coefficient to control
the contributions from different metapaths. W∗ and G∗ are the
augmented graphon and metapath reachable graph respectively.

4.2.4 Augmentation. Both of intra-metapath and inter-metapath
augmentation generate new synthetic metapath reachable graphs
as augmented data. For the heterogeneous graph learning mod-
els which require the metapath reachable graph, we directly train
models on the synthetic graph. Otherwise, we regard the edges
in the synthetic graph as the new types of edges and add them
into the original heterogeneous graph, then we train models on the
augmented heterogeneous graph.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments over three widely used
heterogeneous graph datasets. Statistics of them are summarized
in Table 1.
• IMDB: IMDB is an online database about movies and television
programs. We use a subset of IMDB extracted by [8]. It contains
nodes in three domains, including 5257 Actors(A), 2081 Direc-
tors(D) and 4278 Movies(M). Movies are divided into 3 categories
based on their genre information. Each movie is also described by
a bag-of-words representation of its plot keywords. We employ
{MAM, MDM} as the pre-defined metapath set.

• ACM: ACM is a bibliography website. We adopt an ACM graph
provided by [37], containing 7176 Authors(A), 4019 Papers(P) and
60 Subjects. Papers are labeled according to their conferences and
each paper is described by a bag-of-words representation of their
keywords. We employ {PSP, PAP} as the pre-defined metapath
set.

• Yelp: Yelp is a social network which contains a large amount
of user comment data. Here, we adopt the subset of Yelp con-
structed by [17]. It comprises 2614 businesses(B), 1286 users(U),
4 services(S) and 9 rating levels(L). The businesses are labeled
by their categories and the node features are constructed by the
bag-of-words representation of the related keywords. We employ
{BUB, BSB, BUBLB, BUBSB} as the pre-defined metapath set.

5.1.2 Baselines. As there is no graph augmentation method for
heterogeneous graphs, we select six state-of-the-art homogeneous
graph augmentation methods as baselines and adapt them to het-
erogeneous graphs. The details of baselines are as follows:
• Node-centralized Augmentation: We select NodeAug[30],
NASA[2] and LA[16] as baselines. NodeAug proposes three node

augmentation strategies and we only apply these strategies to
target nodes which the downstream task pays attention to. NASA
replaces the immediate neighbors of nodes with their remote
neighbors and we independently conduct above operation on
different types of neighbors to achieve augmentation. LA learns
the features’ distribution of neighbors to generate augmented
data and we also use it to augment target nodes.

• Edge-centralized Augmentation: We select DropEdge[21]
and GAUG[39] as baselines. DropEdge randomly removes edges
to augment the graph and we apply it to all types of edges. For
GAUG, we construct multiple edge predictors to independently
add or remove different types of edges.

• Graph-centralized Augmentation: We select MH-Aug[20]
as baseline. As MH-Aug directly samples synthetic graphs from
the target distribution, we construct different distribution for
different types of edges to generate the augmented data.

5.1.3 Backbone models. In order to verify the effectiveness of our
augmentation framework in improving the performance of het-
erogeneous graph learning models, we select six mainstream het-
erogeneous graph learning models as backbone models: HAN[28],
CompGCN[24], MAGNN[8], HGT[12], Simple-HGN[18], HPN[13].
HAN, MAGNN, HGT and HPN explicitly use metapath information
while other models do not.

5.1.4 Implementation. For all baselines, we tune the hyperparam-
eters based on the validation set performance. For MAHGA, we
employ two-layer-MLPs as the encoder 𝑔𝑒𝑛𝑐

𝜙
and decoder 𝑔𝑑𝑒𝑐

𝜃
of

RCVAE, other model parameters such as the dimensions of relation
type embedding r and latent variable z, the pre-training setting
of RCVAE are tuned by grid search. What’s more, we utilize the
open-source toolkit OpenHGNN[10] to implement the backbone
models and the models parameters keep their reported optimal
values.

5.2 Performance Comparison
We employ node classification as a downstream task to evaluate
the impact of different graph augmentation methods on the perfor-
mance of backbone models. The results are shown in Table 2. From
the table, we make the following observations.

Firstly, although some homogeneous graph augmentation base-
lines can improve the performance of special backbone models on
special heterogeneous datasets, there is no one baseline that can
be applied to all backbone models to have a positive impact on all
datasets. Especially on ACM dataset, all augmentation methods
fail to promote MAGNN but even degrade its performance. The
results indicate that homogeneous graph augmentation methods
cannot generate the satisfied augmented data to effectively improve
the generalization and modeling ability of heterogeneous graph
learning models. So, directly adapting homogeneous graph aug-
mentation method to heterogeneous graph is not a good solution
and it is necessary to design a specialized augmentation framework
for heterogeneous graphs.

Secondly, inmost instances, node-centralized augmentationmeth-
ods perform worse than edge-centralized augmentation methods
and graph-centralized augmentation method. Some typical node-
centralized augmentation methods such as LA even severely harm
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Table 2: Results of node classification with different backbone models and graph augmentation methods on Yelp, ACM and
IMDB datasets. The best results are Bold and the second results are Underline. ↑ represents the performance improvement and
↓ represents the performance deterioration comparing with the original backbone model.

Backbone Model Augmentation Yelp ACM IMDB
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

HAN

— 0.8833(-) 0.8843(-) 0.8900(-) 0.8905(-) 0.5736(-) 0.5633(-)
NodeAug 0.8908(↑) 0.8975(↑) 0.8840(↓) 0.8843(↓) 0.5684(↓) 0.5546(↓)
LA 0.8766(↓) 0.8771(↓) 0.8790(↓) 0.8776(↓) 0.5650(↓) 0.5626(↓)
NASA 0.8913(↑) 0.8973(↑) 0.8960(↑) 0.8976(↑) 0.5791(↑) 0.5733(↑)
DropEdge 0.8937(↑) 0.9004(↑) 0.8920(↑) 0.8924(↑) 0.5811(↑) 0.5745(↑)
GAUG 0.8843(↑) 0.8869(↑) 0.9000(↑) 0.9007(↑) 0.5837(↑) 0.5794(↑)
MH-AUG 0.8893(↑) 0.8962(↑) 0.8980(↑) 0.8952(↑) 0.5784(↑) 0.5717(↑)
MAHGA 0.8957(↑) 0.9061(↑) 0.9180(↑) 0.9196(↑) 0.5946(↑) 0.5934(↑)

CompGCN

— 0.8997(-) 0.9083(-) 0.7630(-) 0.7227(-) 0.5725(-) 0.5687(-)
NodeAug 0.8644(↓) 0.8745(↓) 0.7580(↓) 0.7071(↓) 0.5725(-) 0.5718(↑)
LA 0.8885(↓) 0.8951(↓) 0.7470(↓) 0.7182(↓) 0.5564(↓) 0.5493(↓)
NASA 0.8838(↓) 0.8853(↓) 0.7780(↑) 0.7493(↑) 0.5687(↓) 0.5655(↓)
DropEdge 0.8823(↓) 0.8940(↓) 0.7570(↓) 0.7156(↓) 0.5653(↓) 0.5565(↓)
GAUG 0.9062(↑) 0.9134(↑) 0.7680(↑) 0.7239(↑) 0.5692(↓) 0.5699(↑)
MH-AUG 0.9084(↑) 0.9162(↑) 0.7680(↑) 0.7251(↑) 0.5704(↓) 0.5671(↓)
MAHGA 0.9171(↑) 0.9249(↑) 0.7910(↑) 0.7671(↑) 0.5825(↑) 0.5810(↑)

MAGNN

— 0.8977(-) 0.8904(-) 0.8980(-) 0.8967(-) 0.5742(-) 0.5662(-)
NodeAug 0.8924(↓) 0.8897(↓) 0.8740(↓) 0.8713(↓) 0.5703(↓) 0.5617(↓)
LA 0.8817(↓) 0.8781(↓) 0.8870(↓) 0.8823(↓) 0.5653(↓) 0.5522(↓)
NASA 0.8947(↓) 0.8897(↓) 0.8870(↓) 0.8851(↓) 0.5713(↓) 0.5602(↓)
DropEdge 0.8906(↓) 0.8864(↓) 0.8890(↓) 0.8852(↓) 0.5748(↑) 0.5675(↑)
GAUG 0.8931(↓) 0.8998(↑) 0.8920(↓) 0.8941(↓) 0.5785(↑) 0.5709(↑)
MH-AUG 0.8911(↓) 0.8889(↓) 0.8890(↓) 0.8857(↓) 0.5766(↑) 0.5681(↑)
MAHGA 0.9091(↑) 0.9029(↑) 0.9090(↑) 0.9093(↑) 0.5854(↑) 0.5756(↑)

HGT

— 0.9111(-) 0.9136(-) 0.8810(-) 0.8801(-) 0.5779(-) 0.5757(-)
NodeAug 0.9017(↓) 0.9050(↓) 0.8720(↓) 0.8730(↓) 0.5476(↓) 0.5483(↓)
LA 0.9032(↓) 0.9045(↓) 0.8690(↓) 0.8617(↓) 0.5548(↓) 0.5466(↓)
NASA 0.8987(↓) 0.9015(↓) 0.8610(↓) 0.8581(↓) 0.5710(↓) 0.5669(↓)
DropEdge 0.8967(↓) 0.9015(↓) 0.8450(↓) 0.8478(↓) 0.5420(↓) 0.5370(↓)
GAUG 0.9146(↑) 0.9201(↑) 0.8920(↑) 0.8921(↑) 0.5851(↑) 0.5832(↑)
MH-AUG 0.9056(↓) 0.9081(↓) 0.8770(↓) 0.8795(↓) 0.5715(↓) 0.5681(↓)
MAHGA 0.9201(↑) 0.9272(↑) 0.8950(↑) 0.8952(↑) 0.5903(↑) 0.5875(↑)

Simple-HGN

— 0.8813(-) 0.8729(-) 0.8810(-) 0.8795(-) 0.5819(-) 0.5771(-)
NodeAug 0.8208(↓) 0.7831(↓) 0.8770(↓) 0.8753(↓) 0.5822(↑) 0.5694(↓)
LA 0.8726(↓) 0.8695(↓) 0.8610(↓) 0.8569(↓) 0.5736(↓) 0.5658(↓)
NASA 0.8595(↓) 0.8339(↓) 0.8650(↓) 0.8679(↓) 0.5874(↑) 0.5852(↑)
DropEdge 0.8923(↑) 0.8928(↑) 0.8920(↑) 0.8905(↑) 0.5779(↓) 0.5715(↓)
GAUG 0.8858(↑) 0.8788(↑) 0.8770(↓) 0.8757(↓) 0.5842(↑) 0.5787(↑)
MH-AUG 0.8781(↓) 0.8712(↓) 0.8770(↓) 0.8739(↓) 0.5796(↓) 0.5691(↓)
MAHGA 0.9201(↑) 0.9269(↑) 0.8920(↑) 0.8911(↑) 0.5923(↑) 0.5905(↑)

HPN

— 0.9069(-) 0.8983(-) 0.8890(-) 0.8887(-) 0.5940(-) 0.5870(-)
NodeAug 0.9052(↓) 0.8966(↓) 0.9030(↑) 0.9026(↑) 0.5854(↓) 0.5807(↓)
LA 0.8952(↓) 0.8839(↓) 0.8770(↓) 0.8752(↓) 0.5765(↓) 0.5721(↓)
NASA 0.9115(↑) 0.9068(↑) 0.9040(↑) 0.9055(↑) 0.5897(↓) 0.5845(↓)
DropEdge 0.9136(↑) 0.9056(↑) 0.8980(↑) 0.8984(↑) 0.5909(↓) 0.5882(↑)
GAUG 0.9111(↑) 0.9043(↑) 0.8970(↑) 0.8962(↑) 0.5937(↓) 0.5881(↑)
MH-AUG 0.9098(↑) 0.9034(↑) 0.8970(↑) 0.8976(↑) 0.5914(↓) 0.5836(↓)
MAHGA 0.9178(↑) 0.9122(↑) 0.9120(↑) 0.9127(↑) 0.5998(↑) 0.5957(↑)

the performances of backbone models. We attribute the results to
that node-centralized augmentation methods are more fine-grained
and they pay more attention to the local information of graphs.
However, in heterogeneous graphs, the local information is more
abundant than that in homogeneous graphs as different types of
nodes have different feature spaces and the local structures of them

are also various. Node-centralized homogeneous graph augmenta-
tion methods do not fully consider above characteristics of hetero-
geneous graphs in the augmentation process so that they cannot
perform as well as they do on homogeneous graphs.

Finally, our augmentation framework MAHGA significantly and
consistently outperforms all baselines on all backbone models and
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Table 3: Ablation study on ACM dataset. The best results
are Bold. (·) represents the improvement of performance
comparing with the original backbone model.

Backbone
Model Augmentation ACM

Micro-F1 Macro-F1

HAN

— 0.8900 0.8905
+Structure-level 0.9110(+0.021) 0.9126(+0.0221)
+Intra-Metapath 0.9090(+0.019) 0.9114(+0.0209)
+Inter-Metapath 0.9150(+0.025) 0.9166(+0.0261)
MAHGA 0.9180(+0.028) 0.9196(+0.0291)

CompGCN

— 0.7630 0.7227
+Structure-level 0.7850(+0.022) 0.7587(+0.0360)
+Intra-Metapath 0.7690(+0.006) 0.7293(+0.0066)
+Inter-Metapath 0.7710(+0.008) 0.7323(+0.0096)
MAHGA 0.7910(+0.028) 0.7671(+0.0444)

MAGNN

— 0.8980 0.8967
+Structure-level 0.9070(+0.009) 0.9061(+0.0094)
+Intra-Metapath 0.9000(+0.002) 0.8980(+0.0013)
+Inter-Metapath 0.9000(+0.002) 0.8975(+0.0008)
MAHGA 0.9090(+0.011) 0.9093(+0.0126)

HGT

— 0.8810 0.8801
+Structure-level 0.8930(+0.012) 0.8927(+0.0126)
+Intra-Metapath 0.8840(+0.003) 0.8848(+0.0047)
+Inter-Metapath 0.8830(+0.002) 0.8821(+0.0020)
MAHGA 0.8950(+0.014) 0.8952(+0.0151)

Simple-HGN

— 0.8810 0.8795
+Structure-level 0.8890(+0.008) 0.8893(+0.0098)
+Intra-Metapath 0.8870(+0.006) 0.8881(+0.0086)
+Inter-Metapath 0.8910(+0.010) 0.8901(+0.0106)
MAHGA 0.8930(+0.012) 0.9005(+0.021)

HPN

— 0.8890 0.8887
+Structure-level 0.9040(+0.015) 0.9054(+0.0167)
+Intra-Metapath 0.9090(+0.020) 0.9103(+0.0216)
+Inter-Metapath 0.9120(+0.023) 0.9127(+0.0240)
MAHGA 0.9170(+0.028) 0.9187(+0.0300)

datasets. In general, MAHGA achieves relative performance gains
over original backbone models by 0.58–3.88% in terms of Micro-F1
and 0.87–5.4% in terms of Macro-F1, which proves the effectiveness
and superiority of MAHGA. By designing sophisticated augmenta-
tion strategies from network schema aspect and metapath aspect,
MAHGA introduces the heterogeneity and semantics of heteroge-
neous graphs into augmentation process, which help to generate
better augmented data to improve the performances of heteroge-
neous graph learning models.

5.3 Ablation Study
In order to verify the effectiveness of different augmentation strate-
gies of MAHGA, we design three variants of MAHGA to conduct
the ablation experiments. Only one augmentation strategy is avail-
able for each variant. For example, "+Structure-level" means that
this variant of MAHGA only employs the structure-level augmenta-
tion strategy in Section 4.1. The experimental results are shown in
Table 3. Due to the limitation of space, we only display the results
on ACM dataset. Other results are similar so we omit them.

As we can observe, all augmentation strategies of MAHGA have
a positive impact and they improve the performances of backbone
models. However, for different backbone models and datasets, the
effects of different augmentation strategies vary. For example, the

(a) Yelp_ori (b) ACM_ori (c) IMDB_ori

(d) Yelp_aug (e) ACM_aug (f) IMDB_aug

Figure 3: 2D visualization of node representation of HAN
on three datasets using t-SNE. The different colors represent
different classes.

performance improvements of MAGNN and HGT by metapath-
level augmentation are not as significant as that by structure-level
augmentation, while metapath-level augmentation perform better
than structure-level augmentation on HAN and HPN. It is because
MAGNN and HGT require complete path information including
the intermediate nodes along the metapath, but HAN and HPN
explicitly utilize the metapath based neighbors. Despite all this,
MAHGA still outperforms all variants which indicates that differ-
ent augmentation strategies augment heterogeneous graph from
different aspects and combining them together can further improve
the augmentation effect.

5.4 Visualization
For a more intuitive comparison and to further show the effective-
ness of our proposed augmentation framework, we select HAN
as backbone model and conduct the task of visualization on three
datasets. Here, we utilize t-SNE[19] to project the node representa-
tion learned by HAN into a 2-dimensional space. The experimental
results are depicted in Figure 3. "Yelp_ori" means that we directly
train HAN on Yelp dataset, while "Yelp_aug" means that we employ
MAHGA in the training of HAN. From the visualization, we can see
that the learned node representations have the higher intra-class
similarity and the clearer distinct boundary among different classes
when we adopt MAHGA to train HAN. It is a solid evidence to
prove that MAHGA can enhance the backbone models well.

6 CONCLUSION
In this paper, we study the data augmentation on heterogeneous
graphs, where node types and link types are diverse. Unfortunately,
existing graph augmentation methods are only designed for homo-
geneous graphs and they cannot perform well on heterogeneous
graphs because they ignore the type information and rich semantics
in the latter. Therefore, we propose MAHGA, a novel heteroge-
neous graph augmentation framework to address the above issues.
MAHGA designs augmentation strategies from network schema
and metapath aspects to fully consider the heterogeneity and se-
mantics. Extensive experiments on three common heterogeneous
datasets and six popular heterogeneous graph learning models
demonstrate the rationality and effectiveness of MAHGA.
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A APPENDIX
We give the detailed derivation of Equation (1) and Equation (2).

A.1 Proof of Equation (1)

𝑙𝑜𝑔𝑝𝜃 (X𝑢 |X𝑣, r𝑢𝑣) =
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔𝑝𝜃 (X𝑢 |X𝑣, r𝑢𝑣)𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 ,X𝑣, r𝑢𝑣)
𝑝𝜃 (X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 ,X𝑣, r𝑢𝑣) · 𝑝𝜃 (X𝑢 ,X𝑣, r𝑢𝑣, z)
𝑝𝜃 (X𝑣, r𝑢𝑣) · 𝑝𝜃 (X𝑢 ,X𝑣, r𝑢𝑣, z)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑝𝜃 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣) · 𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)
𝑝𝜃 (z|X𝑢 ,X𝑣, r𝑢𝑣) · 𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

(
𝑙𝑜𝑔

𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

+ 𝑙𝑜𝑔
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)
𝑝𝜃 (z|X𝑢 ,X𝑣, r𝑢𝑣)

)
𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z + 𝐾𝐿(𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) | |𝑝𝜃 (z|X𝑢 ,X𝑣, r𝑢𝑣))

≥
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔
𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z

A.2 Proof of Equation (2)

𝐿𝐸𝐿𝐵𝑂 (X𝑢 ,X𝑣, r𝑢𝑣 ;𝜃, 𝜙) =
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔
𝑝𝜃 (X𝑢 , z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 , z,X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) · 𝑝𝜃 (X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 |z,X𝑣, r𝑢𝑣) · 𝑝𝜃 (z,X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) · 𝑝𝜃 (X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (X𝑢 |z,X𝑣, r𝑢𝑣) · 𝑝𝜃 (z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z

=

∫
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔

𝑝𝜃 (z|X𝑣, r𝑢𝑣)
𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)

𝑑z +
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔𝑝𝜃 (X𝑢 |z,X𝑣, r𝑢𝑣)𝑑z

= −𝐾𝐿(𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) | |𝑝𝜃 (z|X𝑣, r𝑢𝑣)) +
∫

𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣)𝑙𝑜𝑔𝑝𝜃 (X𝑢 |z,X𝑣, r𝑢𝑣)𝑑z

= −𝐾𝐿(𝑞𝜙 (z|X𝑢 ,X𝑣, r𝑢𝑣) | |𝑝𝜃 (z|X𝑣, r𝑢𝑣)) +
1
𝑁 𝑣

𝑁 𝑣∑︁
𝑛=1

𝑙𝑜𝑔𝑝𝜃 (X𝑢 |z𝑛,X𝑣, r𝑢𝑣)
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